

A116592


a(0)=1; a(n) = b(n+2) + b(n), where b(n) = A004001(n) is the HofstadterConway sequence defined by b(1) = b(2) = 1, b(n) = b(b(n1)) + b(nb(n1)) for n>2.


1



1, 3, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 15, 16, 16, 17, 18, 20, 22, 23, 25, 26, 27, 29, 29, 30, 31, 31, 32, 32, 32, 33, 34, 36, 38, 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 53, 54, 55, 56, 57, 59, 59, 60, 61, 61, 62, 62, 63, 63, 64, 64, 64, 64, 65, 66, 68, 70, 72, 74, 75, 77, 78
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

A similar definition applied to the Fibonacci sequence (A000045) leads to the Lucas sequence (A000032).


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000


FORMULA

a(n) = A004001(n+2) + A004001(n) for n>=1.


MAPLE

b:=proc(n) option remember; if n<=2 then 1 else b(b(n1))+b(nb(n1)): fi: end: seq(b(n), n=1..71): a:=proc(n) if n=0 then 1 else b(n+2)+b(n) fi end: seq(a(n), n=0..71);


MATHEMATICA

Cw[0] = 0; Cw[1] = Cw[2] = 1; Cw[n_Integer?Positive] := Cw[n] = Cw[Cw[n  1]] + Cw[n  Cw[n  1]]; L[0] = 1; L[n_] := L[n] = Cw[n  1] + Cw[n + 1]; Table[L[n], {n, 1, 200}]


CROSSREFS

Cf. A000032, A005185, A005229, A004001.
Sequence in context: A201929 A079789 A131209 * A152772 A089175 A265430
Adjacent sequences: A116589 A116590 A116591 * A116593 A116594 A116595


KEYWORD

nonn


AUTHOR

Roger L. Bagula, Mar 27 2006


EXTENSIONS

Edited by N. J. A. Sloane, Apr 15 2006


STATUS

approved



