login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264822
Centered 15-gonal (or pentadecagonal) primes.
2
151, 421, 541, 991, 1171, 1801, 2851, 6091, 11701, 12301, 14851, 16921, 19891, 30241, 34171, 42751, 43891, 52291, 53551, 58741, 62791, 64171, 80341, 81901, 93241, 107101, 121921, 131671, 156601, 163171, 165391, 183691, 193201, 210421, 231001, 233641, 241651, 244351
OFFSET
1,1
COMMENTS
Primes of the form (15*k^2 - 15*k + 2)/2.
All the terms in this sequence are congruent to 1 (mod 10). - K. D. Bajpai, Nov 29 2015
The associated k-values are 5, 8, 9, 12, 13, 16, 20, 29, 40, 41, 45, 48, 52, 64, 68, 76, 77, 84, 85, 89, ... - Danny Rorabaugh, Jan 18 2016
LINKS
OEIS Wiki, Figurate numbers
Eric Weisstein's World of Mathematics, Centered Polygonal Number and Prime Number
MAPLE
select(isprime, [seq((15*k^2 - 15*k + 2) / 2, k=0..1000)]); # K. D. Bajpai, Nov 29 2015
MATHEMATICA
Select[Table[(15n^2 - 15n + 2) / 2, {n, 500}], PrimeQ] (* K. D. Bajpai, Nov 29 2015 *)
PROG
(PARI) for(n=1, 1e3, if(isprime(k=(15*n^2-15*n+2)/2), print1(k, ", "))) \\ Altug Alkan, Nov 26 2015
(Magma) [k: n in [1..10000] | IsPrime(k) where k is (15*n^2-15*n+2) div 2]; // K. D. Bajpai, Nov 29 2015
CROSSREFS
Sequence in context: A089317 A141982 A142271 * A002226 A142361 A142506
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 26 2015
STATUS
approved