login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Centered 15-gonal (or pentadecagonal) primes.
2

%I #24 Sep 08 2022 08:46:14

%S 151,421,541,991,1171,1801,2851,6091,11701,12301,14851,16921,19891,

%T 30241,34171,42751,43891,52291,53551,58741,62791,64171,80341,81901,

%U 93241,107101,121921,131671,156601,163171,165391,183691,193201,210421,231001,233641,241651,244351

%N Centered 15-gonal (or pentadecagonal) primes.

%C Primes of the form (15*k^2 - 15*k + 2)/2.

%C All the terms in this sequence are congruent to 1 (mod 10). - _K. D. Bajpai_, Nov 29 2015

%C The associated k-values are 5, 8, 9, 12, 13, 16, 20, 29, 40, 41, 45, 48, 52, 64, 68, 76, 77, 84, 85, 89, ... - _Danny Rorabaugh_, Jan 18 2016

%H K. D. Bajpai, <a href="/A264822/b264822.txt">Table of n, a(n) for n = 1..10000</a>

%H OEIS Wiki, <a href="https://oeis.org/wiki/Figurate_numbers">Figurate numbers</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CenteredPolygonalNumber.html">Centered Polygonal Number</a> and <a href="http://mathworld.wolfram.com/PrimeNumber.html">Prime Number</a>

%p select(isprime, [seq((15*k^2 - 15*k + 2) / 2, k=0..1000)]); # _K. D. Bajpai_, Nov 29 2015

%t Select[Table[(15n^2 - 15n + 2) / 2, {n, 500}], PrimeQ] (* _K. D. Bajpai_, Nov 29 2015 *)

%o (PARI) for(n=1, 1e3, if(isprime(k=(15*n^2-15*n+2)/2), print1(k,", "))) \\ _Altug Alkan_, Nov 26 2015

%o (Magma) [k: n in [1..10000] | IsPrime(k) where k is (15*n^2-15*n+2) div 2]; // _K. D. Bajpai_, Nov 29 2015

%Y Cf. A000040, A069128.

%K nonn

%O 1,1

%A _Ilya Gutkovskiy_, Nov 26 2015