login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264799
Tree T generated by these rules: 0 is in T, and if x is in T, then x+1 and -2x are in T, with duplicates deleted as they occur.
2
0, 1, -2, 2, -4, -1, 3, 4, -8, -6, -3, 5, 8, -16, -10, -7, -5, 6, 9, 12, 16, -32, -24, -18, -15, -12, -9, 7, 10, 13, 14, 17, 20, 32, -64, -40, -34, -31, -28, -26, -23, -20, -17, -14, -11, 11, 15, 18, 21, 24, 30, 33, 36, 48, 64, -128, -96, -72, -66, -63, -60
OFFSET
0,3
COMMENTS
Every integer occur in T exactly once, so that this is a permutation of the integers. Let g(0) = {0}, g(1) = {1}, g(2) = {-2,2}, g(3) = {-4,-1,3,4}, etc. The number |g(n)| of numbers in the n-th generation is a Fibonacci number except for g(3); see A264800.
LINKS
EXAMPLE
Generations begin with
0
1
-2 2
-4 -1 3 4
-8 -6 -3 5 8
-16 -10 -7 -5 6 9 12 16
MATHEMATICA
z = 10; t = Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, -2*#} &, #], 1]] &, {0}, z]]; s[0] = t[[1]]; s[n_] := s[n] = Union[t[[n]], s[n - 1]];
g[n_] := Complement[s[n], s[n - 1]]; g[1] = {0};
Table[Length[g[k]], {k, 1, z}] (* A264800 *)
u = Table[g[k], {k, 1, z}]
Flatten[u] (* A264799 *)
CROSSREFS
KEYWORD
sign,tabf,easy
AUTHOR
Clark Kimberling, Nov 25 2015
STATUS
approved