login
A264594
Let G[1](q) denote the g.f. for A003114 and G[2](q) the g.f. for A003106 (the two Rogers-Ramanujan identities). For i>=3, let G[i](q) = (G[i-1](q)-G[i-2](q))/q^(i-2). Sequence gives coefficients of G[7](q).
9
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 24, 26, 29, 32, 36, 39, 44, 48, 54, 59, 66, 72, 81, 88, 98, 107, 119, 129, 143, 156, 172, 187, 206, 224, 247, 268, 294, 320, 351, 381, 417, 453, 495, 537, 586, 635, 693, 750, 816
OFFSET
0,17
COMMENTS
It is conjectured that G[i](q) = 1 + O(q^i) for all i.
LINKS
Shashank Kanade, Some results on the representation theory of vertex operator algebras and integer partition identities, PhD Handout, Math. Dept., Rutgers University, April 2015.
Shashank Kanade, Some results on the representation theory of vertex operator algebras and integer partition identities, PhD Dissertation, Math. Dept., Rutgers University, April 2015.
FORMULA
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * sqrt(5) * phi^(11/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 24 2016
MATHEMATICA
nmax = 100; CoefficientList[Series[Sum[x^(k*(k+6))/Product[1-x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 24 2016 *)
CROSSREFS
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595.
Sequence in context: A111684 A025159 A373073 * A026829 A025154 A241827
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 19 2015
STATUS
approved