login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264165
3-smooth numbers whose number of divisors is 3-smooth.
2
1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 32, 36, 54, 72, 96, 108, 128, 216, 243, 256, 288, 384, 486, 768, 864, 972, 1152, 1944, 2048, 2187, 2304, 3456, 4374, 6144, 6561, 6912, 7776, 8748, 13122, 17496, 18432, 26244, 31104, 32768, 52488, 55296, 62208, 69984
OFFSET
1,2
LINKS
FORMULA
A065333(a(n)) * A065333(A000005(a(n))) = 1.
EXAMPLE
a(25) = 768 = 2^8*3 = A003586(38) and A000005(768) = 18 = 2*3^2;
a(26) = 864 = 2^5*3^3 = A003586(39) and A000005(864) = 24 = 2^3*3;
a(27) = 972 = 2^2*3^5 = A003586(40) and A000005(972) = 18 = 2*3^2;
but A003586(41) = 1024 = 2^10 is not a term, as A000005(1024) = 11.
MATHEMATICA
smQ[n_] := n == Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]);
seq[max_] := Sort@ Flatten@ Table[2^i * 3^j, {i, Select[Range[0, Floor[Log2[max]]], smQ[# + 1] &]}, {j, Select[Range[0, Floor[Log[3, max/2^i]]], smQ[# + 1] &]}]; seq[70000] (* Amiram Eldar, Sep 03 2023 *)
PROG
(Haskell)
a264165 n = a264165_list !! (n-1)
a264165_list = filter ((== 1) . a065333 . a000005') a003586_list
CROSSREFS
Cf. A000005, A003586, A065333, A264164 (complement with respect to A003586).
Sequence in context: A018528 A018376 A018302 * A018570 A018338 A018271
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 19 2015
STATUS
approved