login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

3-smooth numbers whose number of divisors is 3-smooth.
2

%I #14 Sep 03 2023 08:43:44

%S 1,2,3,4,6,8,9,12,18,24,27,32,36,54,72,96,108,128,216,243,256,288,384,

%T 486,768,864,972,1152,1944,2048,2187,2304,3456,4374,6144,6561,6912,

%U 7776,8748,13122,17496,18432,26244,31104,32768,52488,55296,62208,69984

%N 3-smooth numbers whose number of divisors is 3-smooth.

%H Reinhard Zumkeller, <a href="/A264165/b264165.txt">Table of n, a(n) for n = 1..2000</a>

%F A065333(a(n)) * A065333(A000005(a(n))) = 1.

%e a(25) = 768 = 2^8*3 = A003586(38) and A000005(768) = 18 = 2*3^2;

%e a(26) = 864 = 2^5*3^3 = A003586(39) and A000005(864) = 24 = 2^3*3;

%e a(27) = 972 = 2^2*3^5 = A003586(40) and A000005(972) = 18 = 2*3^2;

%e but A003586(41) = 1024 = 2^10 is not a term, as A000005(1024) = 11.

%t smQ[n_] := n == Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]);

%t seq[max_] := Sort@ Flatten@ Table[2^i * 3^j, {i, Select[Range[0, Floor[Log2[max]]], smQ[# + 1] &]}, {j, Select[Range[0, Floor[Log[3, max/2^i]]], smQ[# + 1] &]}]; seq[70000] (* _Amiram Eldar_, Sep 03 2023 *)

%o (Haskell)

%o a264165 n = a264165_list !! (n-1)

%o a264165_list = filter ((== 1) . a065333 . a000005') a003586_list

%Y Cf. A000005, A003586, A065333, A264164 (complement with respect to A003586).

%K nonn

%O 1,2

%A _Reinhard Zumkeller_, Nov 19 2015