login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262950
Expansion of q * chi(-q^3) * chi(-q^13) / (chi(-q) * chi(-q^39)) in powers of q where chi() is a Ramanujan theta function.
2
1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 7, 8, 9, 11, 12, 14, 15, 17, 20, 22, 25, 28, 31, 34, 38, 43, 48, 53, 58, 64, 71, 79, 88, 96, 105, 115, 127, 140, 154, 168, 183, 200, 219, 240, 262, 285, 310, 337, 367, 400, 435, 472, 511, 554, 601, 652, 707, 764, 825
OFFSET
1,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2) * eta(q^3) * eta(q^13) * eta(q^78) / (eta(q) * eta(q^6) * eta(q^26) * eta(q^39)) in powers of q.
Euler transform of a period 78 sequence.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 - v) * (v - w^2) - 2 * u*w * (1 + v)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (78 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128519.
G.f.: x * Product_{k>0} P(x^k) where P(x) is the 78th cyclotomic polynomial of degree 24.
Convolution inverse of A128519.
a(n) ~ exp(2*Pi*sqrt(2*n/39)) / (2^(3/4) * 39^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 29 2019
EXAMPLE
G.f. = q + q^2 + q^3 + q^4 + q^5 + 2*q^6 + 2*q^7 + 3*q^8 + 3*q^9 + 3*q^10 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; b := eta[q^2]*eta[q^3]*eta[q^13]* eta[q^78]/(eta[q]*eta[q^6]*eta[q^26]*eta[q^39]); a:= CoefficientList[ Series[q*b, {q, 0, 80}], q]; Drop[Table[a[[n]], {n, 1, 80}], 2] (* G. C. Greubel, Jul 03 2018 *)
nmax = 100; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(39*k)) / ((1 + x^(3*k)) * (1 + x^(13*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2019 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^13 + A) * eta(x^78 + A) / (eta(x + A) * eta(x^6 + A) * eta(x^26 + A) * eta(x^39 + A)), n))};
CROSSREFS
Cf. A128519.
Sequence in context: A348336 A302984 A029094 * A227398 A003105 A240856
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 19 2015
STATUS
approved