Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Mar 12 2021 22:24:48
%S 1,1,1,1,1,2,2,3,3,3,4,5,6,6,7,8,9,11,12,14,15,17,20,22,25,28,31,34,
%T 38,43,48,53,58,64,71,79,88,96,105,115,127,140,154,168,183,200,219,
%U 240,262,285,310,337,367,400,435,472,511,554,601,652,707,764,825
%N Expansion of q * chi(-q^3) * chi(-q^13) / (chi(-q) * chi(-q^39)) in powers of q where chi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A262950/b262950.txt">Table of n, a(n) for n = 1..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of eta(q^2) * eta(q^3) * eta(q^13) * eta(q^78) / (eta(q) * eta(q^6) * eta(q^26) * eta(q^39)) in powers of q.
%F Euler transform of a period 78 sequence.
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 - v) * (v - w^2) - 2 * u*w * (1 + v)^2.
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (78 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128519.
%F G.f.: x * Product_{k>0} P(x^k) where P(x) is the 78th cyclotomic polynomial of degree 24.
%F Convolution inverse of A128519.
%F a(n) ~ exp(2*Pi*sqrt(2*n/39)) / (2^(3/4) * 39^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Nov 29 2019
%e G.f. = q + q^2 + q^3 + q^4 + q^5 + 2*q^6 + 2*q^7 + 3*q^8 + 3*q^9 + 3*q^10 + ...
%t eta[q_] := q^(1/24)*QPochhammer[q]; b := eta[q^2]*eta[q^3]*eta[q^13]* eta[q^78]/(eta[q]*eta[q^6]*eta[q^26]*eta[q^39]); a:= CoefficientList[ Series[q*b, {q, 0, 80}], q]; Drop[Table[a[[n]], {n, 1, 80}], 2] (* _G. C. Greubel_, Jul 03 2018 *)
%t nmax = 100; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(39*k)) / ((1 + x^(3*k)) * (1 + x^(13*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 29 2019 *)
%o (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^13 + A) * eta(x^78 + A) / (eta(x + A) * eta(x^6 + A) * eta(x^26 + A) * eta(x^39 + A)), n))};
%Y Cf. A128519.
%K nonn
%O 1,6
%A _Michael Somos_, Nov 19 2015