The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262810 Number of lattice paths from {n}^n to {0}^n using steps that decrement one or more components by one. 3
 1, 1, 13, 16081, 5552351121, 1050740615666453461, 179349571255187154941191217629, 41020870889694863957061607086939138327565057, 17469051230066445323872793284679234619523576313653708533767425 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..25 FORMULA a(n) = A262809(n,n). a(n) ~ n^(n^2 - n/2 + 1) / (exp(1/12) * 2^(n + log(2)/24) * Pi^((n-1)/2) * log(2)^(n^2+1)). - Vaclav Kotesovec, Mar 23 2016 EXAMPLE a(2) = 13: [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,1),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)]. MATHEMATICA Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^n, {i, 0, j}], {j, 0, n^2}], {n, 1, 10}]}] (* Vaclav Kotesovec, Mar 23 2016 *) PROG (PARI) a(n)=sum(j=0, n^2, sum(i=0, j, (-1)^i*binomial(j, i)*binomial(j - i, n)^n)) \\ Charles R Greathouse IV, Jul 29 2016 CROSSREFS Main diagonal of A262809. Cf. A316677. Sequence in context: A176096 A215685 A327585 * A340295 A203514 A098562 Adjacent sequences: A262807 A262808 A262809 * A262811 A262812 A262813 KEYWORD nonn,nice AUTHOR Alois P. Heinz, Oct 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 00:51 EDT 2024. Contains 373432 sequences. (Running on oeis4.)