login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262810
Number of lattice paths from {n}^n to {0}^n using steps that decrement one or more components by one.
3
1, 1, 13, 16081, 5552351121, 1050740615666453461, 179349571255187154941191217629, 41020870889694863957061607086939138327565057, 17469051230066445323872793284679234619523576313653708533767425
OFFSET
0,3
LINKS
FORMULA
a(n) = A262809(n,n).
a(n) ~ n^(n^2 - n/2 + 1) / (exp(1/12) * 2^(n + log(2)/24) * Pi^((n-1)/2) * log(2)^(n^2+1)). - Vaclav Kotesovec, Mar 23 2016
EXAMPLE
a(2) = 13: [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,1),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)].
MATHEMATICA
Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^n, {i, 0, j}], {j, 0, n^2}], {n, 1, 10}]}] (* Vaclav Kotesovec, Mar 23 2016 *)
PROG
(PARI) a(n)=sum(j=0, n^2, sum(i=0, j, (-1)^i*binomial(j, i)*binomial(j - i, n)^n)) \\ Charles R Greathouse IV, Jul 29 2016
CROSSREFS
Main diagonal of A262809.
Cf. A316677.
Sequence in context: A176096 A215685 A327585 * A340295 A203514 A098562
KEYWORD
nonn,nice
AUTHOR
Alois P. Heinz, Oct 02 2015
STATUS
approved