login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262776
a(n) = Fibonacci(n!) mod Fibonacci(n)!.
1
0, 0, 0, 0, 0, 0, 20160, 1098377280, 10712200669548618240, 157910199555786679826546221836620444160, 12162675222629942931022379230724715707339402614012620710827200735689241600
OFFSET
0,7
COMMENTS
Inspired by A261626.
Is there a possibility of observing that a(n) = 0 for n > 5?
LINKS
FORMULA
a(n) = A063374(n) mod A060001(n), for n > 0.
EXAMPLE
a(0) = Fibonacci(0!) mod Fibonacci(0)! = 1 mod 1 = 0.
a(1) = Fibonacci(1!) mod Fibonacci(1)! = 1 mod 1 = 0.
a(2) = Fibonacci(2!) mod Fibonacci(2)! = 1 mod 1 = 0.
a(3) = Fibonacci(3!) mod Fibonacci(3)! = 8 mod 2 = 0.
a(4) = Fibonacci(4!) mod Fibonacci(4)! = 46368 mod 6 = 0.
MATHEMATICA
Table[Mod[Fibonacci[n!], Fibonacci[n]!], {n, 0, 9}] (* Michael De Vlieger, Oct 01 2015 *)
PROG
(PARI) a(n) = fibonacci(n!) % fibonacci(n)!;
vector(10, n, a(n-1))
(Magma) [Fibonacci(Factorial(n)) mod Factorial(Fibonacci(n)): n in [0..10]]; // Vincenzo Librandi, Oct 01 2015
(Python)
from gmpy2 import fac, fib
def A262776(n):
if n < 2:
return 0
a, b, m = 0, 1, fac(fib(n))
for i in range(fac(n)-1):
b, a = (b+a) % m, b
return int(b) # Chai Wah Wu, Oct 03 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Oct 01 2015
EXTENSIONS
a(10) from Alois P. Heinz, Oct 01 2015
STATUS
approved