login
A262775
For a(n+1), sift out all numbers congruent to a(n-1) mod a(n) except for a(n-1); a(0)=0, a(1)=2.
3
0, 2, 3, 7, 9, 13, 15, 19, 21, 27, 33, 37, 39, 49, 51, 55, 57, 63, 67, 69, 81, 85, 99, 105, 109, 111, 117, 121, 123, 127, 135, 141, 147, 153, 175, 177, 189, 195, 201, 207, 211, 219, 247, 249, 261, 265, 267, 273, 279, 285, 289, 301, 303, 307, 315, 327, 337
OFFSET
0,2
COMMENTS
A sifted set generated by a sieve similar to the sieve of Eratosthenes.
LINKS
Max Barrentine, Table of n, a(n) for n = 0..812 [Corrected Apr 18 2016]
FORMULA
a(0)=0, a(1)=2; for n>1, a(n) is the smallest integer k>a(n-1) such that k≠≠a(j) mod a(j-1) for all j<n.
EXAMPLE
a(0)=0 and a(1)=2, so after 2, sift out the even numbers. The next remaining number after 2 is 3, so a(2)=3. Then sift out all numbers k==2 (mod 3), except for 2. The next remaining number is 7, so sift out all numbers k==3 (mod 7), except for 3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Barrentine, Oct 03 2015
STATUS
approved