login
A262586
Square array T(n,m) (n>=0, m>=0) read by antidiagonals downwards giving number of rooted triangulations of type [n,m] up to orientation-preserving isomorphisms.
13
1, 1, 1, 1, 2, 1, 4, 5, 6, 5, 6, 16, 21, 26, 24, 19, 48, 88, 119, 147, 133, 49, 164, 330, 538, 735, 892, 846, 150, 559, 1302, 2310, 3568, 4830, 5876, 5661, 442, 1952, 5005, 9882, 16500, 24596, 33253, 40490, 39556, 1424, 6872, 19504, 41715, 75387, 120582, 176354, 237336, 290020, 286000, 4522
OFFSET
0,5
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
Jean-François Alcover, Mathematica code
W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]. See Table 1 (with a typo at G(n=1,m=6)).
L. March and C. F. Earl, On Counting Architectural Plans, Environment and Planning B, 4 (1977), 57-80. See Table 2.
FORMULA
Brown (Eq. 6.3) gives a formula.
EXAMPLE
Array begins:
==============================================================
n\k | 0 1 2 3 4 5 6 ...
----+---------------------------------------------------------
0 | 1 1 1 4 6 19 49 ...
1 | 1 2 5 16 48 164 559 ...
2 | 1 6 21 88 330 1302 5005 ...
3 | 5 26 119 538 2310 9882 41715 ...
4 | 24 147 735 3568 16500 75387 338685 ...
5 | 133 892 4830 24596 120582 578622 2730728 ...
6 | 846 5876 33253 176354 900240 4493168 22037055 ...
7 | 5661 40490 237336 1298732 6849810 35286534 178606610 ...
...
The first few antidiagonals are:
1,
1,1,
1,2,1,
4,5,6,5,
6,16,21,26,24,
19,48,88,119,147,133,
49,164,330,538,735,892,846,
...
MAPLE
A262586 := proc(n, m)
BrownG(n, m) ; # procedure in A210696
end proc:
for d from 0 to 12 do
for n from 0 to d do
printf("%d, ", A262586(n, d-n)) ;
end do:
end do: # R. J. Mathar, Oct 21 2015
MATHEMATICA
See LINKS section.
PROG
(PARI) \\ See Links in A169808 for PARI program file.
{ for(n=0, 7, for(k=0, 7, print1(OrientedTriangs(n, k), ", ")); print) } \\ Andrew Howroyd, Nov 23 2024
CROSSREFS
Columns 0..2 are A002709, A002710, A002711.
Rows 0..3 are A001683, A210696, A005498, A005499.
Antidiagonal sums are A341855.
Cf. A169808 (unoriented), A169809 (achiral).
Sequence in context: A074720 A323456 A326058 * A058359 A261608 A351250
KEYWORD
nonn,tabl,changed
AUTHOR
N. J. A. Sloane, Oct 20 2015
STATUS
approved