OFFSET
0,5
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
Jean-François Alcover, Mathematica code
W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]. See Table 1 (with a typo at G(n=1,m=6)).
L. March and C. F. Earl, On Counting Architectural Plans, Environment and Planning B, 4 (1977), 57-80. See Table 2.
FORMULA
Brown (Eq. 6.3) gives a formula.
EXAMPLE
Array begins:
==============================================================
n\k | 0 1 2 3 4 5 6 ...
----+---------------------------------------------------------
0 | 1 1 1 4 6 19 49 ...
1 | 1 2 5 16 48 164 559 ...
2 | 1 6 21 88 330 1302 5005 ...
3 | 5 26 119 538 2310 9882 41715 ...
4 | 24 147 735 3568 16500 75387 338685 ...
5 | 133 892 4830 24596 120582 578622 2730728 ...
6 | 846 5876 33253 176354 900240 4493168 22037055 ...
7 | 5661 40490 237336 1298732 6849810 35286534 178606610 ...
...
The first few antidiagonals are:
1,
1,1,
1,2,1,
4,5,6,5,
6,16,21,26,24,
19,48,88,119,147,133,
49,164,330,538,735,892,846,
...
MAPLE
A262586 := proc(n, m)
BrownG(n, m) ; # procedure in A210696
end proc:
for d from 0 to 12 do
for n from 0 to d do
printf("%d, ", A262586(n, d-n)) ;
end do:
end do: # R. J. Mathar, Oct 21 2015
MATHEMATICA
See LINKS section.
PROG
(PARI) \\ See Links in A169808 for PARI program file.
{ for(n=0, 7, for(k=0, 7, print1(OrientedTriangs(n, k), ", ")); print) } \\ Andrew Howroyd, Nov 23 2024
CROSSREFS
Antidiagonal sums are A341855.
KEYWORD
AUTHOR
N. J. A. Sloane, Oct 20 2015
STATUS
approved