login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261608
G.f.: Sum_{n=-oo..+oo, n<>0} x^(n^2) / (1 - x^n)^(n+1).
4
2, 1, 4, 5, 6, 6, 8, 16, 12, 15, 12, 32, 14, 28, 32, 52, 18, 55, 20, 74, 72, 66, 24, 160, 28, 91, 140, 146, 30, 205, 32, 271, 244, 153, 72, 442, 38, 190, 392, 563, 42, 518, 44, 505, 788, 276, 48, 1510, 52, 451, 852, 896, 54, 1086, 728, 1748, 1180, 435, 60, 3291, 62, 496, 1648, 2867, 1848, 2101, 68, 2481, 2072, 1953, 72, 7634
OFFSET
1,1
LINKS
FORMULA
G.f.: Sum_{n=-oo..+oo, n<>0} x^n * (x^n - 1)^(n-1).
G.f.: Sum_{n=-oo..+oo} x^(n^2)/(1 + x^n)^n, where the sum is taken to exclude the coefficient of x^0.
G.f.: Sum_{n=-oo..+oo} (1 + x^n)^n, where the sum is taken to exclude the coefficient of x^0.
G.f.: x * d/dx Sum_{n=-oo..+oo, n<>0} (1/n^2) * x^(n^2)/(1 - x^n)^n. - Paul D. Hanna, Nov 16 2017
EXAMPLE
G.f.: A(x) = 2*x + x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 6*x^6 + 8*x^7 + 16*x^8 + 12*x^9 + 15*x^10 + 12*x^11 + 32*x^12 + 14*x^13 + 28*x^14 +...
where A(x) = N(x) + P(x) such that
N(x) = x*(x-1)^0 + x^2*(x^2-1) + x^3*(x^3-1)^2 + x^4*(x^4-1)^3 + x^5*(x^5-1)^4 + x^6*(x^6-1)^5 + x^7*(x^7-1)^6 + x^8*(x^8-1)^7 +...
P(x) = x/(1-x)^2 + x^4/(1-x^2)^3 + x^9/(1-x^3)^4 + x^16/(1-x^4)^5 + x^25/(1-x^5)^6 + x^36/(1-x^6)^7 + x^49/(1-x^7)^8 +...
explicitly,
N(x) = x - x^2 + x^3 + x^5 - 3*x^6 + x^7 + 2*x^8 + 2*x^9 - 5*x^10 + x^11 + x^12 + x^13 - 7*x^14 + 7*x^15 + 7*x^16 + x^17 - 19*x^18 + x^19 + 4*x^20 +...
P(x) = x + 2*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 9*x^6 + 7*x^7 + 14*x^8 + 10*x^9 + 20*x^10 + 11*x^11 + 31*x^12 + 13*x^13 + 35*x^14 + 25*x^15 +...
PROG
(PARI) {a(n) = polcoeff(sum(m=-n-1, n+1, if(m!=0, x^(m^2)/(1-x^m +x*O(x^n))^(m+1))), n)}
for(n=1, 60, print1(a(n), ", "))
(PARI) {a(n) = polcoeff(sum(m=-n-1, n+1, if(m!=0, x^m*(x^m-1 +x*O(x^n))^(m-1))), n)}
for(n=1, 60, print1(a(n), ", "))
(PARI) {a(n) = polcoeff(sum(m=-n-1, n+1, x^(m^2)/(1+x^m +x*O(x^n))^m), n)}
for(n=1, 60, print1(a(n), ", "))
(PARI) {a(n) = polcoeff(sum(m=-n-1, n+1, (1 + x^m +x*O(x^n))^m), n)}
for(n=1, 60, print1(a(n), ", "))
CROSSREFS
Cf. A261605.
Sequence in context: A326058 A262586 A058359 * A351250 A351253 A110332
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 26 2015
STATUS
approved