OFFSET
2,1
COMMENTS
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime having a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s. (For A260444, the seed is not an integer, so that the offset is 2.)
LINKS
Clark Kimberling, Table of n, a(n) for n = 2..200
EXAMPLE
As a triangle:
0000000
19000000091
1190000000911
36119000000091163
953611900000009116359
9095361190000000911635909
790953611900000009116359097
MATHEMATICA
s0 = "0000000"; s = {ToExpression[s0]}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s], 10, Max[StringLength[s0], Length[IntegerDigits[Last[s]]]]], Reverse[#]]&[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {10}]; s0 <> ", " <> StringTake[ToString[Rest[s]], {2, -2}]
(* Peter J. C. Moses, Sep 23 2015 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Sep 24 2015
STATUS
approved