OFFSET
2,1
COMMENTS
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime having a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s. (For A261819, the seed is not an integer, so that the offset is 2.)
LINKS
Clark Kimberling, Table of n, a(n) for n = 2..200
EXAMPLE
As a triangle:
000
1300031
10130003101
171013000310171
91710130003101719
3917101300031017193
16391710130003101719361
MATHEMATICA
s0 = "000"; s = {ToExpression[s0]}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s], 10, Max[StringLength[s0], Length[IntegerDigits[Last[s]]]]], Reverse[#]]&[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {10}]; s0 <> ", " <> StringTake[ToString[Rest[s]], {2, -2}]
(* Peter J. C. Moses, Sep 23 2015 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Sep 24 2015
STATUS
approved