login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262083
Smallest possible prime factor of 10^k+n for any k.
1
2, 7, 2, 7, 2, 3, 2, 17, 2, 7, 2, 3, 2, 7, 2, 5, 2, 3, 2, 7, 2, 11, 2, 3, 2, 5, 2, 7, 2, 3, 2, 7, 2, 7, 2, 3, 2, 7, 2, 7, 2, 3, 2, 7, 2, 5, 2, 3, 2, 13, 2, 7, 2, 3, 2, 5, 2, 7, 2, 3, 2, 7, 2, 17, 2, 3, 2, 7, 2, 7, 2, 3, 2, 7, 2, 5, 2, 3, 2, 7, 2, 7, 2, 3, 2, 5, 2, 7, 2, 3, 2, 17, 2, 7, 2, 3, 2, 7, 2, 7, 2
OFFSET
0,1
COMMENTS
Is this sequence bounded? What are the records for a(n)?
From Robert G. Wilson v, Sep 13 2015: (Start)
First occurrence of the i-th prime: 0, 5, 15, 1, 21, 49, 7, 357, 24871, 364021, ..., .
a(n) = 2 when n == 0 (mod 2),
a(n) = 3 when n == 5 (mod 6),
a(n) = 5 when n == 15 or 25 (mod 30),
a(n) = 7 when n == 1, 3, 9, 13, 19, 27, 31, 33, 37, 39, 43, 51, 57, 61, 67, 69, 73, 79, 81, 87, 93, 97, 99, 103, 109, 111, 117, 121, 123, 127, 129, 139, 141, 151, 153, 157, 159, 163, 169, 171, 177, 181, 183, 187, 193, 199, 201 or 207 (mod 210),
a(n) = 11 when n = 21, 133, 441, 483, 637, 903, 1057, 1099, 1407, 1519, 1561, 1827, 1869, 1981, 2023 or 2289 (mod 2310),
a(n) = 13 when n = 49, 147, 217, 231, 259, 399, 469, 511, 651, 679, 693, 763, 777, 861, 987, 1141, 1197, (413 terms missing), 29883 or 29953, ... (mod 30030),
a(n) = 17 when n = 7, 63, 91, 189, 273, 301, 343, 427, 553, 567, 609, 721, 819, 847, 889, 931, 973, 1029, (8044 terms missing), 510349 or 510447 (mod 510510),
a(n) = 19 when n = 357, 1071, 2737, 3451, 6069, 6307, 8211, 9163, 9639, 10353, 12019, 12733, 13447, 13923, 15351, 15589, 17017, 17493, 18207, ... (mod 9699690),
a(n) = 23 when n = 24871, 47481, 74613, 88179, 92701, 106267, 133399, 142443, 160531, 187663, 201229, 210273, 223839, 250971, 264537, 309757, ... (mod 223092870),
a(n) = 29 when n = 364021, 988057, ... (mod 6469693230), etc.
To the question if this sequence is 'bounded', I would answer no.
(End)
For complete lists of when a(n) < 19, see Wilson's Congruencies a-file. - Danny Rorabaugh, Oct 08 2015
LINKS
Robert G. Wilson v, Congruencies for A262083
EXAMPLE
a(1) = 7 since 10^k+1 is not divisible by 2,3 or 5 for all k but is divisible by 7 when k = 3 (i.e., 1001 = 7*11*13).
MATHEMATICA
p = Prime@ Range@ 25; f[n_] := Block[{k = 1, lst = {}}, While[k < 25, AppendTo[lst, Position[ Mod[ PowerMod[10, k, p] + n, p] 0, 1, 1][[1, 1]]]; k++]; lst = Union@ lst; Prime@ lst[[1]]]; Array[f, 101, 0] (* Robert G. Wilson v, Sep 13 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Sergio Pimentel, Sep 10 2015
EXTENSIONS
More terms from Robert G. Wilson v, Sep 13 2015
STATUS
approved