login
A262067
a(n) = n^n - (n-2)^n.
2
2, 4, 26, 240, 2882, 42560, 745418, 15097600, 347066882, 8926258176, 253930611002, 7916100448256, 268352394448322, 9828088361009152, 386707997366768618, 16268790735900180480, 728714136550643404802, 34624041592426892361728
OFFSET
1,1
COMMENTS
Inspired by multi-dimensional cubes: For n>1, the number of lattice points on the surface of a k-dimensional cube with side-length n is f(n,k) = n^k - (n-2)^k. a(n) = f(n,n).
FORMULA
a(n) = A000312(n) - A008788(n-2).
EXAMPLE
For n = 2, a(n) = n^n - (n-2)^n = 2^2 - (2-2)^2 = 4.
MAPLE
A262067:=n->n^n - (n-2)^n: seq(A262067(n), n=1..20); # Wesley Ivan Hurt, Sep 10 2015
MATHEMATICA
Array[#^# - (# - 2)^# &, {18}] (* Michael De Vlieger, Sep 10 2015 *)
PROG
(PARI) a(n) = n^n - (n-2)^n;
vector(40, n, a(n))
(Magma) [n^n - (n-2)^n : n in [1..20]]; // Wesley Ivan Hurt, Sep 10 2015
CROSSREFS
For sequences with "Number of points on surface of k-dimensional cube," cf. A130130 (k=1), A008574 (k=2, shifted), A005897 (k=3), A008511 (k=4), A008512 (k=5), A008513 (k=6).
Sequence in context: A032328 A019034 A091759 * A193480 A032076 A182146
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Sep 10 2015
STATUS
approved