login
A261929
a(n) is the number of different pairs (p,q) mod n not of the form (x*y,x+y) mod n for any (x,y).
1
0, 1, 3, 8, 10, 18, 21, 36, 45, 55, 55, 96, 78, 112, 135, 160, 136, 216, 171, 280, 273, 286, 253, 408, 350, 403, 432, 560, 406, 630, 465, 656, 693, 697, 805, 1008, 666, 874, 975, 1180, 820, 1260, 903, 1408, 1485, 1288, 1081, 1728, 1323, 1675, 1683, 1976, 1378, 2025, 2035, 2352, 2109, 2059, 1711, 2880, 1830, 2356
OFFSET
1,3
FORMULA
a(n) = n^2 - A261928(n).
EXAMPLE
a(2) = 1 because only the pair (1,1) mod 2 doesn't exist as result from any (x*y,x+y) mod 2.
CROSSREFS
Cf. A261928 (number of pairs that have such a form).
Sequence in context: A341939 A244353 A143144 * A020488 A064435 A079541
KEYWORD
nonn
AUTHOR
Thomas Kerscher, Sep 06 2015
STATUS
approved