The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261932 The first of two consecutive positive integers the sum of the squares of which is equal to the sum of the squares of ten consecutive positive integers. 4
 26, 48, 68, 126, 468, 866, 1226, 2268, 8406, 15548, 22008, 40706, 150848, 279006, 394926, 730448, 2706866, 5006568, 7086668, 13107366, 48572748, 89839226, 127165106, 235202148, 871602606, 1612099508, 2281885248, 4220531306, 15640274168, 28927951926 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For the first of the corresponding ten consecutive positive integers, see A261934. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,18,-18,0,0,-1,1). FORMULA G.f.: -2*x*(4*x^8-x^7+x^5-63*x^4+29*x^3+10*x^2+11*x+13) / ((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)). a(n) = a(n-1) + 18*a(n-4) - 18*a(n-5) - a(n-8) + a(n-9) for n>8. - Vincenzo Librandi, Sep 07 2015 EXAMPLE 26 is in the sequence because 26^2 + 27^2 = 7^2 + 8^2 + ... + 16^2. MATHEMATICA CoefficientList[Series[2 (4 x^8 - x^7 + x^5 - 63 x^4 + 29 x^3 + 10 x^2 + 11 x + 13)/((1 - x) (x^4 - 4 x^2 - 1) (x^4 + 4 x^2 - 1)), {x, 0, 45}], x] (* Vincenzo Librandi, Sep 07 2015 *) PROG (PARI) Vec(-2*x*(4*x^8-x^7+x^5-63*x^4+29*x^3+10*x^2+11*x+13)/((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)) + O(x^40)) CROSSREFS Cf. A001652, A031138, A261933, A261934, A261935. Sequence in context: A159651 A118367 A316120 * A364025 A324041 A137263 Adjacent sequences: A261929 A261930 A261931 * A261933 A261934 A261935 KEYWORD nonn,easy AUTHOR Colin Barker, Sep 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 17:59 EDT 2024. Contains 374899 sequences. (Running on oeis4.)