login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261932
The first of two consecutive positive integers the sum of the squares of which is equal to the sum of the squares of ten consecutive positive integers.
4
26, 48, 68, 126, 468, 866, 1226, 2268, 8406, 15548, 22008, 40706, 150848, 279006, 394926, 730448, 2706866, 5006568, 7086668, 13107366, 48572748, 89839226, 127165106, 235202148, 871602606, 1612099508, 2281885248, 4220531306, 15640274168, 28927951926
OFFSET
1,1
COMMENTS
For the first of the corresponding ten consecutive positive integers, see A261934.
FORMULA
G.f.: -2*x*(4*x^8-x^7+x^5-63*x^4+29*x^3+10*x^2+11*x+13) / ((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)).
a(n) = a(n-1) + 18*a(n-4) - 18*a(n-5) - a(n-8) + a(n-9) for n>8. - Vincenzo Librandi, Sep 07 2015
EXAMPLE
26 is in the sequence because 26^2 + 27^2 = 7^2 + 8^2 + ... + 16^2.
MATHEMATICA
CoefficientList[Series[2 (4 x^8 - x^7 + x^5 - 63 x^4 + 29 x^3 + 10 x^2 + 11 x + 13)/((1 - x) (x^4 - 4 x^2 - 1) (x^4 + 4 x^2 - 1)), {x, 0, 45}], x] (* Vincenzo Librandi, Sep 07 2015 *)
PROG
(PARI) Vec(-2*x*(4*x^8-x^7+x^5-63*x^4+29*x^3+10*x^2+11*x+13)/((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)) + O(x^40))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 06 2015
STATUS
approved