login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261792
Primes of the form k*pi(k) - 1, where pi(k) is the number of primes <= k.
1
5, 7, 17, 31, 59, 83, 89, 151, 167, 233, 251, 373, 443, 467, 479, 601, 643, 719, 863, 911, 1019, 1097, 1151, 1187, 1291, 1439, 1553, 1637, 1759, 1931, 2207, 2861, 3023, 3389, 3449, 3539, 3659, 3719, 3779, 3967, 4759, 4793, 4861, 5471, 5507, 6269, 6551, 6959, 7039, 7079, 7643, 7727, 7853, 7937, 8623
OFFSET
1,1
COMMENTS
Sequence elements A000040 of the form A128913(n) - 1.
Primes of the form pi(k)*pi(prime(k)) + e^(i*Pi), where pi(k) is the number of primes <= k, i is the imaginary unit, Pi = 3.14159...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Prime Number
Eric Weisstein's World of Mathematics, Prime Counting Function
MATHEMATICA
Select[Array[# PrimePi[#] - 1 &, {200}], PrimeQ] (* Michael De Vlieger, Sep 01 2015 *)
PROG
(PARI) list(lim)=my(v=List(), k, pi, t); while(1, if(isprime(k++), pi++); t=k*pi-1; if(t>lim, return(Vec(v))); if(isprime(t), listput(v, t))) \\ Charles R Greathouse IV, Sep 18 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 01 2015
EXTENSIONS
Terms a(32)-a(55) added by Michael De Vlieger, Sep 01 2015
Corrected by Charles R Greathouse IV, Sep 18 2015
STATUS
approved