login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261731
Initial member of five twin prime pairs with gap 210 between them.
1
1308497, 3042491, 3042701, 7445309, 20031101, 31572521, 44687987, 54266291, 141208619, 182316521, 237416369, 357080021, 448436321, 611641187, 699458411, 761126027, 774997367, 794065967, 836452961, 915215591, 944958941, 1009194617, 1581935939, 1763255561, 1871007371
OFFSET
1,1
COMMENTS
More precisely, primes p such that p+2, p+210, p+212, p+420, p+422, p+630, p+632, p+840, p+842 are all primes.
All the terms in this sequence are congruent to 2 (mod 3).
LINKS
K. D. Bajpai and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 46 terms from K. D. Bajpai]
EXAMPLE
1308497 appears in this sequence because: (a) {1308497, 1308499}, {1308707, 1308709}, {1308917, 1308919}, {1309127, 1309129}, and {1309337, 1309339} are five twin prime pairs; (b) the gap between each twin prime pair {1308707 - 1308497} = {1308917-1308707} = {1309127 - 1308917} = {1309337 - 1309127} = 210.
MAPLE
select(p -> andmap(isprime, [p, p+2, p+210, p+212, p+420, p+422, p+630, p+632, p+840, p+842]), [seq(p, p=1..2*10^7)]);
MATHEMATICA
k = 210; Select[Prime@Range[6*10^7], PrimeQ[# + 2] && PrimeQ[# + k] && PrimeQ[# + k + 2] && PrimeQ[# + 2 k] && PrimeQ[# + 2 k + 2] && PrimeQ[# + 3 k] && PrimeQ[# + 3 k + 2] && PrimeQ[# + 4 k] && PrimeQ[# + 4 k + 2] &]
Select[Prime[Range[93*10^6]], AllTrue[#+{2, 210, 212, 420, 422, 630, 632, 840, 842}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 05 2018 *)
PROG
(PARI) forprime(p= 1, 3*10^9, if(isprime(p+2) && isprime(p+210) && isprime(p+212) && isprime(p+420) && isprime(p+422) && isprime(p+630) && isprime(p+632) && isprime(p+840) && isprime(p+842), print1(p, ", ")));
(Magma) [p: p in PrimesUpTo (100000) | IsPrime(p+2) and IsPrime(p+210) and IsPrime(p+212) and IsPrime(p+420) and IsPrime(p+422) and IsPrime(p+630) and IsPrime(p+632) and IsPrime(p+840) and IsPrime(p+842) ];
(Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e10, 2, 210, 212, 420, 422, 630, 632, 840, 842); # Dana Jacobsen, Oct 02 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Aug 30 2015
STATUS
approved