login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261701
Initial member of four twin prime pairs with gap 210 between them.
2
599, 3917, 5021, 37361, 48779, 81929, 93281, 97157, 263399, 433049, 783149, 821801, 906119, 908669, 1197197, 1308497, 1308707, 1379237, 1464809, 1908449, 2036861, 2341979, 2408561, 2760671, 2804309, 3042491, 3042701, 3042911, 3198197, 4090649, 4543991, 5543927
OFFSET
1,1
COMMENTS
More precisely, primes p such that p + 2, p + 210, p + 212, p + 420, p + 422, p + 630, p + 632 are all primes.
All the terms in this sequence are congruent to 2 (mod 3).
LINKS
K. D. Bajpai and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 865 terms from K. D. Bajpai]
Luis Rodriguez and Carlos Rivera, Gaps between consecutive twin pairs, The Prime Puzzles and Problems Connection.
EXAMPLE
599 appears in the sequence because: (a) {599,601}, {809, 811}, {1019, 1021}, {1229, 1231} are four (not consecutive) twin prime pairs; (b) the gap between each twin prime pair (809 - 599) = (1019 - 809) = (1229 - 1019) = 210.
MAPLE
select(p -> andmap(isprime, [p, p+2, p+210, p+212, p+420, p+422, p+630, p+632]), [seq(p, p=1..10^5)]);
MATHEMATICA
k = 210; Select[Prime@Range[10^7], PrimeQ[# + 2] && PrimeQ[# + k] && PrimeQ[# + k + 2] && PrimeQ[# + 2 k] && PrimeQ[# + 2 k + 2] && PrimeQ[# + 3 k] && PrimeQ[# + 3 k + 2] &]
Select[Prime[Range[400000]], AllTrue[#+{2, 210, 212, 420, 422, 630, 632}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 17 2019 *)
PROG
(PARI) forprime(p= 1, 100000, if(isprime(p+2) && isprime(p+210) && isprime(p+212) && isprime(p+420) && isprime(p+422) && isprime(p+630) && isprime(p+632), print1(p, ", ")));
(Magma) [p: p in PrimesUpTo (100000) | IsPrime(p+2) and IsPrime(p+210) and IsPrime(p+212) and IsPrime(p+420) and IsPrime(p+422) and IsPrime(p+630) and IsPrime(p+632) ];
(Perl) use ntheory ":all"; say join ", ", grep { is_prime($_+210) && is_prime($_+212) && is_prime($_+420) && is_prime($_+422) && is_prime($_+630) && is_prime($_+632) } @{twin_primes(1e8)}; # Dana Jacobsen, Sep 02 2015
(Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e8, 2, 210, 212, 420, 422, 630, 632); # Dana Jacobsen, Oct 03 2015
CROSSREFS
Cf. A001359 (twin primes), A077800, A113274, A253624.
Sequence in context: A106762 A158277 A250937 * A362324 A172244 A090222
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Aug 28 2015
STATUS
approved