The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261701 Initial member of four twin prime pairs with gap 210 between them. 2
 599, 3917, 5021, 37361, 48779, 81929, 93281, 97157, 263399, 433049, 783149, 821801, 906119, 908669, 1197197, 1308497, 1308707, 1379237, 1464809, 1908449, 2036861, 2341979, 2408561, 2760671, 2804309, 3042491, 3042701, 3042911, 3198197, 4090649, 4543991, 5543927 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS More precisely, primes p such that p + 2, p + 210, p + 212, p + 420, p + 422, p + 630, p + 632 are all primes. All the terms in this sequence are congruent to 2 (mod 3). LINKS K. D. Bajpai and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 865 terms from K. D. Bajpai] Luis Rodriguez and Carlos Rivera, Gaps between consecutive twin pairs, The Prime Puzzles and Problems Connection. EXAMPLE 599 appears in the sequence because: (a) {599,601}, {809, 811}, {1019, 1021}, {1229, 1231} are four (not consecutive) twin prime pairs; (b) the gap between each twin prime pair (809 - 599) = (1019 - 809) = (1229 - 1019) = 210. MAPLE select(p -> andmap(isprime, [p, p+2, p+210, p+212, p+420, p+422, p+630, p+632]), [seq(p, p=1..10^5)]); MATHEMATICA k = 210; Select[Prime@Range[10^7], PrimeQ[# + 2] && PrimeQ[# + k] && PrimeQ[# + k + 2] && PrimeQ[# + 2 k] && PrimeQ[# + 2 k + 2] && PrimeQ[# + 3 k] && PrimeQ[# + 3 k + 2] &] Select[Prime[Range[400000]], AllTrue[#+{2, 210, 212, 420, 422, 630, 632}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 17 2019 *) PROG (PARI) forprime(p= 1, 100000, if(isprime(p+2) && isprime(p+210) && isprime(p+212) && isprime(p+420) && isprime(p+422) && isprime(p+630) && isprime(p+632), print1(p, ", "))); (Magma) [p: p in PrimesUpTo (100000) | IsPrime(p+2) and IsPrime(p+210) and IsPrime(p+212) and IsPrime(p+420) and IsPrime(p+422) and IsPrime(p+630) and IsPrime(p+632) ]; (Perl) use ntheory ":all"; say join ", ", grep { is_prime(\$_+210) && is_prime(\$_+212) && is_prime(\$_+420) && is_prime(\$_+422) && is_prime(\$_+630) && is_prime(\$_+632) } @{twin_primes(1e8)}; # Dana Jacobsen, Sep 02 2015 (Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e8, 2, 210, 212, 420, 422, 630, 632); # Dana Jacobsen, Oct 03 2015 CROSSREFS Cf. A001359 (twin primes), A077800, A113274, A253624. Sequence in context: A106762 A158277 A250937 * A362324 A172244 A090222 Adjacent sequences: A261698 A261699 A261700 * A261702 A261703 A261704 KEYWORD nonn AUTHOR K. D. Bajpai, Aug 28 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 29 19:20 EST 2024. Contains 370428 sequences. (Running on oeis4.)