login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Initial member of five twin prime pairs with gap 210 between them.
1

%I #25 Sep 08 2022 08:46:13

%S 1308497,3042491,3042701,7445309,20031101,31572521,44687987,54266291,

%T 141208619,182316521,237416369,357080021,448436321,611641187,

%U 699458411,761126027,774997367,794065967,836452961,915215591,944958941,1009194617,1581935939,1763255561,1871007371

%N Initial member of five twin prime pairs with gap 210 between them.

%C More precisely, primes p such that p+2, p+210, p+212, p+420, p+422, p+630, p+632, p+840, p+842 are all primes.

%C All the terms in this sequence are congruent to 2 (mod 3).

%H K. D. Bajpai and Dana Jacobsen, <a href="/A261731/b261731.txt">Table of n, a(n) for n = 1..10000</a> [first 46 terms from K. D. Bajpai]

%e 1308497 appears in this sequence because: (a) {1308497, 1308499}, {1308707, 1308709}, {1308917, 1308919}, {1309127, 1309129}, and {1309337, 1309339} are five twin prime pairs; (b) the gap between each twin prime pair {1308707 - 1308497} = {1308917-1308707} = {1309127 - 1308917} = {1309337 - 1309127} = 210.

%p select(p -> andmap(isprime, [p, p+2, p+210, p+212, p+420, p+422, p+630, p+632, p+840, p+842]),[seq(p, p=1..2*10^7)]);

%t k = 210; Select[Prime@Range[6*10^7], PrimeQ[# + 2] && PrimeQ[# + k] && PrimeQ[# + k + 2] && PrimeQ[# + 2 k] && PrimeQ[# + 2 k + 2] && PrimeQ[# + 3 k] && PrimeQ[# + 3 k + 2] && PrimeQ[# + 4 k] && PrimeQ[# + 4 k + 2] &]

%t Select[Prime[Range[93*10^6]],AllTrue[#+{2,210,212,420,422,630,632,840,842},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Apr 05 2018 *)

%o (PARI) forprime(p= 1,3*10^9, if(isprime(p+2) && isprime(p+210) && isprime(p+212) && isprime(p+420) && isprime(p+422) && isprime(p+630) && isprime(p+632) && isprime(p+840) && isprime(p+842), print1(p,", ")));

%o (Magma) [p: p in PrimesUpTo (100000) | IsPrime(p+2) and IsPrime(p+210) and IsPrime(p+212) and IsPrime(p+420) and IsPrime(p+422) and IsPrime(p+630) and IsPrime(p+632) and IsPrime(p+840) and IsPrime(p+842) ];

%o (Perl) use ntheory ":all"; say for sieve_prime_cluster(1,1e10, 2, 210, 212, 420, 422, 630, 632, 840, 842); # _Dana Jacobsen_, Oct 02 2015

%Y Cf. A077800, A113274, A253624, A261701.

%K nonn

%O 1,1

%A _K. D. Bajpai_, Aug 30 2015