login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261619
a(n) = floor(prime(n^2) / prime(n)).
1
1, 2, 4, 7, 8, 11, 13, 16, 18, 18, 21, 22, 24, 27, 30, 30, 31, 35, 36, 38, 42, 43, 45, 47, 47, 50, 53, 56, 59, 61, 59, 62, 63, 67, 66, 70, 72, 73, 76, 78, 80, 83, 83, 86, 89, 92, 92, 91, 94, 97, 100, 101, 105, 105, 107, 109, 111, 115, 117, 119
OFFSET
1,2
COMMENTS
Inspired by A213926.
The reason of "/" operation between prime(n^2) and prime(n) is n^2 / n = n.
Sequence is not monotone: 61 = a(30) > a(31) = 59. In the first thousand terms there are 83 less than the preceding term; in the first ten thousand, 865. - Charles R Greathouse IV, Sep 12 2015
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = floor(A011757(n) / A000040(n)).
a(n) ~ n/(2 log^2 n). - Charles R Greathouse IV, Sep 12 2015
EXAMPLE
For n=2, a(n) = floor(prime(n^2) / prime(n)) = floor(7/3) = 2.
MATHEMATICA
Table[Floor[Prime[n^2] / Prime[n]], {n, 1, 100}] (* Vincenzo Librandi, May 24 2019 *)
PROG
(PARI) a(n) = floor(prime(n^2) / prime(n));
vector(70, n, a(n))
(PARI) first(n)=my(v=List(), p, k); forprime(q=2, , if(issquare(k++), p=nextprime(p+1); listput(v, q\p); if(#v==n, return(Vec(v))))) \\ Charles R Greathouse IV, Sep 12 2015
(Magma) [NthPrime(n^2) div NthPrime(n): n in [1..70]]; // Vincenzo Librandi, May 24 2019
(Sage) [floor(nth_prime(n^2)/nth_prime(n)) for n in (1..70)] # G. C. Greubel, May 24 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Sep 09 2015
STATUS
approved