login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(prime(n^2) / prime(n)).
1

%I #47 Sep 08 2022 08:46:13

%S 1,2,4,7,8,11,13,16,18,18,21,22,24,27,30,30,31,35,36,38,42,43,45,47,

%T 47,50,53,56,59,61,59,62,63,67,66,70,72,73,76,78,80,83,83,86,89,92,92,

%U 91,94,97,100,101,105,105,107,109,111,115,117,119

%N a(n) = floor(prime(n^2) / prime(n)).

%C Inspired by A213926.

%C The reason of "/" operation between prime(n^2) and prime(n) is n^2 / n = n.

%C Sequence is not monotone: 61 = a(30) > a(31) = 59. In the first thousand terms there are 83 less than the preceding term; in the first ten thousand, 865. - _Charles R Greathouse IV_, Sep 12 2015

%H Charles R Greathouse IV, <a href="/A261619/b261619.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = floor(A011757(n) / A000040(n)).

%F a(n) ~ n/(2 log^2 n). - _Charles R Greathouse IV_, Sep 12 2015

%e For n=2, a(n) = floor(prime(n^2) / prime(n)) = floor(7/3) = 2.

%t Table[Floor[Prime[n^2] / Prime[n]], {n, 1, 100}] (* _Vincenzo Librandi_, May 24 2019 *)

%o (PARI) a(n) = floor(prime(n^2) / prime(n));

%o vector(70, n, a(n))

%o (PARI) first(n)=my(v=List(),p,k); forprime(q=2,, if(issquare(k++), p=nextprime(p+1); listput(v, q\p); if(#v==n, return(Vec(v))))) \\ _Charles R Greathouse IV_, Sep 12 2015

%o (Magma) [NthPrime(n^2) div NthPrime(n): n in [1..70]]; // _Vincenzo Librandi_, May 24 2019

%o (Sage) [floor(nth_prime(n^2)/nth_prime(n)) for n in (1..70)] # _G. C. Greubel_, May 24 2019

%Y Cf. A000040, A011757, A213926.

%K nonn

%O 1,2

%A _Altug Alkan_, Sep 09 2015