login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261207
Expansion of (x-1)/8 - (x^2-4*x-1)/(8*sqrt(x^2-6*x+1)).
1
0, 1, 3, 14, 70, 363, 1925, 10364, 56412, 309605, 1710247, 9496746, 52960674, 296408847, 1663998345, 9365980152, 52837614456, 298676661129, 1691325089867, 9592607927750, 54482777049918, 309837754937843, 1764046900535053, 10054065679046004, 57357471874390100
OFFSET
0,3
COMMENTS
Number of vertices in all Schroeder trees with n leaves. See Theorem 2.1 of Van Duzer. - Michel Marcus, Apr 12 2019
LINKS
Anthony Van Duzer, Subtrees of a Given size in Schroeder Trees, arXiv:1904.05525 [math.CO], 2019.
FORMULA
a(n) = Sum_{i=0..n-1}(2^i*(-1)^(n-i-1)*C(n+1,n-i-1)*C(n+i,n)).
a(n) = (-1)^(n+1)*(n*(n+1)/2)*hypergeom([1-n, 1+n], [3], 2). - Peter Luschny, Aug 12 2015
a(n) = A010683(n-1)*(n+1)/2. - Peter Luschny, Aug 12 2015
a(n) ~ (3+2*sqrt(2))^n / (2^(9/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 17 2015
D-finite with recurrence: n*a(n) +(-2*n-5)*a(n-1) +3*(-8*n+21)*a(n-2) +(10*n-39)*a(n-3) +(-n+5)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
MAPLE
a := n -> simplify((-1)^(n+1)*(n*(n+1)/2)*hypergeom([1-n, 1+n], [3], 2));
seq(a(n), n=0..27); # Peter Luschny, Aug 12 2015
MATHEMATICA
CoefficientList[Series[(x - 1) / 8 - (x^2 - 4 x - 1) / (8 Sqrt[x^2 - 6 x + 1]), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 12 2015 *)
PROG
(Maxima) a(n):=sum(2^i*(-1)^(n-i-1)*binomial(n+1, n-i-1)*binomial(n+i, n), i, 0, n-1);
(PARI) vector(30, n, n--; sum(i=0, n-1, 2^i*(-1)^(n-i-1)*binomial(n+1, n-i-1)*binomial(n+i, n))) \\ Michel Marcus, Aug 12 2015
CROSSREFS
Cf. A010683.
Sequence in context: A020065 A028938 A038213 * A161939 A270598 A001579
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Aug 11 2015
STATUS
approved