login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260784
Coefficients in a certain low-temperature series expansion.
1
0, 24, 1440, 181440, 43545600, 17882726400, 11333177856000, 10257397742592000, 12540115964952576000, 19887027595237490688000, 39679473692005106319360000, 97249082487667949725286400000, 287164491478121796028858368000000, 1005464789964467723115455053824000000
OFFSET
1,2
LINKS
Grzegorz Siudem, Agata Fronczak, Bell polynomials in the series expansions of the Ising model, arXiv:2007.16132 [math-ph], 2020.
G. Siudem, A. Fronczak, P. Fronczak, Exact low-temperature series expansion for the partition function of the two-dimensional zero-field s= 1/2 Ising model on the infinite square lattice, arXiv preprint arXiv:1410.7963, 2014. See equations (8) and (11).
FORMULA
a(n) ~ 2^(2*n) * (1 + sqrt(2))^(2*n) * n^(2*n - 5/2) / (sqrt(Pi) * exp(2*n)). - Vaclav Kotesovec, May 03 2024
MAPLE
A260784 := proc(n)
local a, d1, d2, d3, d4, d33half ;
a := 0 ;
for d2 from 0 do
if 2*d2 > n then
break;
end if;
for d3 from 0 do
if 2*d2 +3*d3 > n then
break;
end if;
for d4 from 0 do
if 2*d2 +3*d3+4*d4 > n then
break;
end if;
d1 := n-2*d2-3*d3-4*d4 ;
if d1 >= 0 and type(d1+d3, 'even') then
d13half := (d1+d3)/2 ;
a := a+(d1+d2+d3+d4)!/d1!/d2!/d3!/d4!*(-1)^(d2+d3+d4-1)*2^d2
/(d1+d2+d3+d4)*binomial(d1+d3, d13half)^2 ;
end if;
end do:
end do:
end do:
a*n!/2 ;
end proc:
seq(A260784(2*n), n=1..15) ; # R. J. Mathar, Aug 27 2015
MATHEMATICA
"Listing 1" in Siudem et al. (2014) gives Mathematica code for the fractions a(n)/(2n)!.
CROSSREFS
Cf. A002890.
Sequence in context: A276595 A348700 A010797 * A099060 A035174 A288955
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 04 2015
STATUS
approved