Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 May 03 2024 06:05:51
%S 0,24,1440,181440,43545600,17882726400,11333177856000,
%T 10257397742592000,12540115964952576000,19887027595237490688000,
%U 39679473692005106319360000,97249082487667949725286400000,287164491478121796028858368000000,1005464789964467723115455053824000000
%N Coefficients in a certain low-temperature series expansion.
%H Vaclav Kotesovec, <a href="/A260784/b260784.txt">Table of n, a(n) for n = 1..196</a>
%H Grzegorz Siudem, Agata Fronczak, <a href="https://arxiv.org/abs/2007.16132">Bell polynomials in the series expansions of the Ising model</a>, arXiv:2007.16132 [math-ph], 2020.
%H G. Siudem, A. Fronczak, P. Fronczak, <a href="http://arxiv.org/abs/1410.7963">Exact low-temperature series expansion for the partition function of the two-dimensional zero-field s= 1/2 Ising model on the infinite square lattice</a>, arXiv preprint arXiv:1410.7963, 2014. See equations (8) and (11).
%F a(n) ~ 2^(2*n) * (1 + sqrt(2))^(2*n) * n^(2*n - 5/2) / (sqrt(Pi) * exp(2*n)). - _Vaclav Kotesovec_, May 03 2024
%p A260784 := proc(n)
%p local a,d1,d2,d3,d4,d33half ;
%p a := 0 ;
%p for d2 from 0 do
%p if 2*d2 > n then
%p break;
%p end if;
%p for d3 from 0 do
%p if 2*d2 +3*d3 > n then
%p break;
%p end if;
%p for d4 from 0 do
%p if 2*d2 +3*d3+4*d4 > n then
%p break;
%p end if;
%p d1 := n-2*d2-3*d3-4*d4 ;
%p if d1 >= 0 and type(d1+d3,'even') then
%p d13half := (d1+d3)/2 ;
%p a := a+(d1+d2+d3+d4)!/d1!/d2!/d3!/d4!*(-1)^(d2+d3+d4-1)*2^d2
%p /(d1+d2+d3+d4)*binomial(d1+d3,d13half)^2 ;
%p end if;
%p end do:
%p end do:
%p end do:
%p a*n!/2 ;
%p end proc:
%p seq(A260784(2*n),n=1..15) ; # _R. J. Mathar_, Aug 27 2015
%t "Listing 1" in Siudem et al. (2014) gives Mathematica code for the fractions a(n)/(2n)!.
%Y Cf. A002890.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Aug 04 2015