login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A260640
Numbers n such that binomial(3*n,n) == 0 (mod n).
3
1, 3, 6, 12, 21, 35, 44, 55, 60, 70, 78, 88, 90, 99, 102, 110, 117, 119, 120, 133, 156, 171, 176, 180, 184, 204, 207, 220, 225, 230, 231, 234, 238, 240, 247, 252, 255, 285, 286, 300, 312, 341, 342, 348, 360, 368, 372, 391, 403, 408, 414, 425, 434, 460, 462, 465, 468, 481, 483, 494, 495, 504, 506, 510, 550, 555, 561, 572, 574, 585, 600
OFFSET
1,2
COMMENTS
See A014847 for the analog for 2n.
LINKS
M. Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems, sect. III: Binomial coefficients modulo integers, binomod.gp (v.1.4, 11/2015).
MATHEMATICA
Select[Range@ 600, Mod[Binomial[3 #, #], #] == 0 &] (* Michael De Vlieger, Nov 12 2015 *)
PROG
(PARI) for(n=1, 999, binomod(3*n, n, n)==0&&print1(n", ")) \\ Using binomod.gp by M. Alekseyev, cf. links.
(Python)
from __future__ import division
A260640_list, b = [], 3
for n in range(1, 10**3):
if not b % n:
A260640_list.append(n)
b = b*3*(3*n+2)*(3*n+1)//((2*n+2)*(2*n+1)) # Chai Wah Wu, Jan 27 2016
(Magma) [n: n in [1..600] |Binomial(3*n, n) mod n eq 0]; // Vincenzo Librandi, Jan 29 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Nov 11 2015
STATUS
approved