login
A260476
Primes p such that p = 2*phi(sigma((p-1)/2))+1.
1
3, 5, 17, 257, 65537, 285121, 1425601, 2380801, 100638721, 8778792961, 184354652161
OFFSET
1,1
COMMENTS
The first 5 known Fermat primes from A019434 are terms.
EXAMPLE
17 = 2*phi(sigma((17-1)/2))+1 = 2*phi(15)+1 = 2*8+1, so 17 is a term.
MATHEMATICA
Select[Prime@ Range@ 1000000, # == 2 EulerPhi[DivisorSigma[1, (# - 1)/2]] + 1 &] (* Michael De Vlieger, Sep 25 2015 *)
PROG
(Magma) [n: n in [3..1000000] | IsPrime(n) and n eq 2 * EulerPhi(SumOfDivisors((n-1) div 2)) + 1];
(PARI) forprime(p=3, 1e8, if((2*eulerphi(sigma((p-1)/2)) + 1) == p, print1(p ", "))) \\ Altug Alkan, Sep 25 2015
CROSSREFS
Sequence in context: A093179 A067387 A050922 * A070592 A254576 A232720
KEYWORD
nonn,more,changed
AUTHOR
Jaroslav Krizek, Sep 24 2015
STATUS
approved