login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, a(A014580(n)) = A206074(a(n)), a(A091242(n)) = A205783(1+a(n)), where A014580(n) [resp. A091242(n)] give binary codes for n-th irreducible [resp. reducible] polynomial over GF(2), while A206074 and A205783 give similar codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.
4

%I #16 Jul 27 2015 22:13:04

%S 1,2,3,4,6,8,5,9,12,15,7,10,13,16,21,26,14,18,19,22,27,34,40,24,11,30,

%T 32,35,42,51,23,60,38,20,46,49,31,52,63,76,43,36,92,57,33,68,17,74,48,

%U 78,95,114,64,54,25,135,86,50,37,102,47,28,111,72,118,140,67,165,96,82,39,195,79,128,75,56,150,70,44

%N a(1) = 1, a(A014580(n)) = A206074(a(n)), a(A091242(n)) = A205783(1+a(n)), where A014580(n) [resp. A091242(n)] give binary codes for n-th irreducible [resp. reducible] polynomial over GF(2), while A206074 and A205783 give similar codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

%H Antti Karttunen, <a href="/A260425/b260425.txt">Table of n, a(n) for n = 1..4244</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(1) = 1; for n > 1, if A091225(n) = 1 [when n is in A014580], then a(n) = A206074(a(A091226(n))), otherwise [when n is in A091242], a(n) = A205783(1+a(A091245(n))).

%F As a composition of related permutations:

%F a(n) = A260422(A246201(n)).

%F a(n) = A260423(A245704(n)).

%o (PARI)

%o allocatemem(234567890);

%o vecsize = (2^24)-4;

%o uplim = 2^25;

%o v091226 = vector(vecsize); A091226 = n -> v091226[n];

%o A091245(n) = ((n-A091226(n))-1);

%o v206074 = vector(vecsize); A206074 = n -> v206074[n];

%o v205783 = vector(vecsize); A205783 = n -> v205783[n];

%o isA014580(n) = polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from _Charles R Greathouse IV_

%o isA206074(n) = polisirreducible(Pol(binary(n)));

%o v091226[1] = 0; v205783[1] = 1; i=0; j=1; n=2; while((n < uplim), if(!(n%65536),print1(n,", ")); if(isA206074(n), i++; v206074[i] = n, j++; v205783[j] = n); if(isA014580(n), v091226[n] = v091226[n-1]+1, v091226[n] = v091226[n-1]); n++); print(n);

%o A260425(n) = if(1==n, 1, if(isA014580(n), A206074(A260425(A091226(n))), A205783(1+A260425(A091245(n)))));

%o for(n=1, 4244, write("b260425.txt", n, " ", A260425(n)));

%o (Scheme) (definec (A260425 n) (cond ((<= n 1) n) ((= 1 (A091225 n)) (A206074 (A260425 (A091226 n)))) (else (A205783 (+ 1 (A260425 (A091245 n)))))))

%Y Inverse: A260426.

%Y Related permutations: A246201, A245704, A260422, A260423.

%Y Cf. A014580, A091225, A091226, A091242, A091245, A205783, A206074.

%Y Differs from A245704 for the first time at n=16, where a(16) = 26, while A245704(16) = 25.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jul 26 2015