login
A260299
Numbers k such that hyperfactorial(prime(k)-1) == 1 (mod prime(k)).
2
1, 2, 4, 15, 17, 22, 23, 27, 28, 31, 34, 43, 46, 47, 54, 56, 61, 63, 67, 73, 75, 76, 83, 91, 92, 95, 96, 101, 107, 109, 111, 115, 117, 120, 129, 132, 141, 143, 144, 146, 149, 150, 153, 154, 155, 164, 167, 181, 190, 192, 193, 205, 208, 214, 215, 219, 224, 225
OFFSET
1,2
LINKS
Matthew Campbell and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 2516 terms from Campbell)
FORMULA
a(n) = pi(A260298(n)).
EXAMPLE
The 4th prime is 7, and the hyperfactorial of 7 is 4031078400000, which is congruent to 1 mod 7. - Kellen Myers, Aug 19 2015
MATHEMATICA
PrimePi[fQ[n_]:= Mod[Hyperfactorial[n - 1], n] == 1; Select[Prime@Range@250, fQ]] (* Vincenzo Librandi, Aug 20 2015 *)
PROG
(PARI) is(n, p=prime(n))=prod(k=2, p-1, Mod(k, p)^k)==1 \\ Charles R Greathouse IV, Aug 29 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew Campbell, Jul 22 2015
STATUS
approved