OFFSET
1,2
COMMENTS
For k = 1, 2, 4, 15, 16, the corresponding primes are 19, 599, 389999, 931322574584960937499, 23283064365234374999999.
a(n) is not of the form 5*m + 3 (divisibility by 11) or 9*m + 10 (divisibility by 19), 7*m + (-1)^m + 7 (divisibility by 29) or 29*m + 27 (divisibility by 59).
a(23) > 10^5. - Robert Price, Dec 12 2019
EXAMPLE
4 is in the sequence because 25^4-5^4-1 = 389999 is prime.
MATHEMATICA
Select[Range[6000], PrimeQ[25^# - 5^# - 1] &]
PROG
(Magma) [n: n in [0..300] | IsPrime(25^n-5^n-1)];
(PARI) is(n)=ispseudoprime(25^n - 5^n - 1) \\ Anders Hellström, Dec 11 2015
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Dec 11 2015
EXTENSIONS
a(17)-a(22) from Robert Price, Dec 12 2019
STATUS
approved