login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260266
Primes that contain only digits in {0, 1, 4}.
7
11, 41, 101, 401, 4001, 4111, 4441, 10111, 10141, 11411, 14011, 14401, 14411, 40111, 41011, 41141, 41411, 44041, 44101, 44111, 100411, 101111, 101141, 101411, 110441, 114001, 114041, 140111, 140401, 140411, 141041, 141101, 400441, 401101, 401411, 404011
OFFSET
1,1
COMMENTS
A020449 and A020452 are subsequences.
All terms end with a digit "1". - M. F. Hasler, Jul 26 2015
LINKS
MATHEMATICA
Select[Prime[Range[4 10^4]], Complement[IntegerDigits[#], {1, 4, 0}]=={} &]
PROG
(Magma) [p: p in PrimesUpTo(5*10^5) | Set(Intseq(p)) subset [1, 4, 0]];
(PARI) A260266(n=50, show=0)={for(d=1, 1e9, my(t, u=vector(d, i, 10^(d-i))~); forvec(v=vector(d, i, [i==1||i==d, 1+(i<d)]), ispseudoprime(t=vector(d, i, v[i]^2)*u)||next; show&&print1(t", "); n--||return(t)))} \\ M. F. Hasler, Jul 25 2015
CROSSREFS
Primes that contain only digits among {1,4,k}: this sequence (k=0), A260267 (k=2), A199341 (k=3), A260268 (k=5), A260269 (k=6), A079651 (k=7), A260270 (k=8), A260271 (k=9).
Sequence in context: A233434 A261538 A066595 * A195117 A027086 A075985
KEYWORD
nonn,easy,base
AUTHOR
Vincenzo Librandi, Jul 22 2015
STATUS
approved