login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260193
Numbers n of the form n = abs(a - b + c - d) such that n^4 equals the concatenation of a//b//c//d and numbers n,b,c,d have the same number of digits.
1
198, 220, 221, 287, 352, 364, 484, 562, 627, 638, 672, 715, 716, 780, 793, 858, 901, 1095, 1233, 2328, 8905, 18183, 39753, 60248, 85207, 336734, 2727274, 5893504, 8620777, 17769557, 52818678, 70710735, 76470590, 82230444, 101318734, 101636206, 104263158, 105262158, 109891110, 109942690, 117883117, 119722383, 120826541
OFFSET
1,1
COMMENTS
Leading zeros in b, c, and d are allowed.
Many numbers come in pairs, like: (220, 221), (715, 716), (140017877, 140017878).
Some numbers are also member of A259379, for example: 287, 715, 1095 and also the pair (140017877, 140017878).
LINKS
EXAMPLE
198^4 = 1536953616 and 198 = abs (1 - 536 + 953 - 616 ).
8905^4 = 6288335365950625 and 8905 = abs (6288 - 3353 + 6595 - 0625 ).
MATHEMATICA
test[n_] := Block[{L=IntegerLength@ n, v}, v = IntegerDigits[ n^4, 10^L]; Length@ v == 4 && Abs@ Total[ {1, -1, 1, -1} v] == n]; Select[Range[10^5], test] (* Giovanni Resta, Aug 12 2015 *)
PROG
(Python)
def modb(n, m):
...kk = 0
....l=1
....while n > 0:
........na=int(n%m)
........l=l+1
........kk= kk+((-1)**l)*na
........n =int(n//m)
....return abs(kk)
for n in range (100, 10**9):
....ll= len(str(n))
....if modb(n**4, 10**ll)==n:
.........print (n)
KEYWORD
nonn,base
AUTHOR
Pieter Post, Jul 22 2015
STATUS
approved