OFFSET
1,1
COMMENTS
This sequence is infinite because it has several infinite subsequences. For example:
274, 326734, 332667334, 3..326..673..34 etc.;
364, 336634, 333666334, 3..36..63..34 etc.;
637, 663367, 666333667, 6..63..36..67 etc.;
727, 673267, 667332667, 6..673..326..67 etc.
Note that: 274 + 727 = 364 + 637 = 1001 and 326734 + 673267 = 336634 + 663367 = 1000001.
Many numbers come in pairs, like: (286, 287), (1095, 1096), (18182, 18183) but also bigger number (140017877, 140017878) and (859982123, 859982124).
140017877 + 859982124 = 140017878 + 859982123 = 1000000001.
LINKS
Pieter Post, Table of n, a(n) for n = 1..189
EXAMPLE
155^3 = 3723875 and 155 = 3 - 723 + 875.
715^3 = 365525875 and 715 = 365 - 525 + 875.
PROG
(Python)
def modb(n, m):
...kk = 0
....l=1
....while n > 0:
........na=int(n%m)
........l=l+1
........kk= kk+((-1)**l)*na
........n =int(n//m)
....return kk
for n in range (100, 10**9):
....ll= len(str(n))
....if modb(n**3, 10**ll)==n:
.........print (n)
(PARI) isok(n)=nb = #digits(n, 10); if (a = n^3 \ 10^(2*nb), c = n^3 % 10^nb; b = (n^3 - a*10^(2*nb))\10^nb; n^3 == (a-b+c)^3; ); \\ Michel Marcus, Aug 05 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Pieter Post, Jul 22 2015
STATUS
approved