login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260168 Expansion of f(-x)^6 * f(-x^3)^2 / phi(-x^3)^8 in powers of q where phi(), f() are Ramanujan theta functions. 1
1, -6, 9, 24, -114, 126, 262, -1044, 999, 1852, -6672, 5868, 10103, -34134, 28341, 46336, -149400, 118872, 186926, -581412, 447507, 682340, -2062332, 1545336, 2297737, -6782508, 4970241, 7236280, -20938728, 15056694, 21531158, -61246128, 43329078, 61003980 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-1/2) * (eta(q)^3 * eta(q^6)^4 / eta(q^3)^7)^2 in powers of q.

Euler transform of period 6 sequence [ -6, -6, 8, -6, -6, 0, ...].

-2 * a(n) = A261576(2*n + 1).

EXAMPLE

G.f. = 1 - 6*x + 9*x^2 + 24*x^3 - 114*x^4 + 126*x^5 + 262*x^6 - 1044*x^7 + ...

G.f. = q - 6*q^3 + 9*q^5 + 24*q^7 - 114*q^9 + 126*q^11 + 262*q^13 - 1044*q^15 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ x]^6 QPochhammer[ x^3]^2 / EllipticTheta[ 4, 0, x^3]^8, {x, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 * eta(x^6 + A)^4 / eta(x^3 + A)^7)^2, n))};

CROSSREFS

Cf. A261576.

Sequence in context: A084431 A176498 A142877 * A093153 A115646 A260565

Adjacent sequences:  A260165 A260166 A260167 * A260169 A260170 A260171

KEYWORD

sign

AUTHOR

Michael Somos, Nov 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)