OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-11/24) * eta(q^3)^3 * eta(q^4)^5 / (eta(q)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 24 sequence [ 2, 2, -1, -3, 2, -1, 2, -1, -1, 2, 2, -6, 2, 2, -1, -1, 2, -1, 2, -3, -1, 2, 2, -4, ...].
3 * a(n) = A260158(4*n + 1).
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 7*x^3 + 9*x^4 + 11*x^5 + 10*x^6 + 15*x^7 + 14*x^8 + ...
G.f. = q^11 + 2*q^35 + 5*q^59 + 7*q^83 + 9*q^107 + 11*q^131 + 10*q^155 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^2] QPochhammer[ x^3]^3 QPochhammer[ -x, x]^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A)^5 / (eta(x + A)^2 * eta(x^8 + A)^2), n))};
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Michael Somos, Nov 09 2015
STATUS
approved