login
A260124
The second infinite sequence starting with a(0)=0 such that A(a(k)) = a(k-1) for all k>=1, where A(n) = n - A037445(n) (cf. A260084).
2
0, 1, 3, 5, 7, 9, 11, 15, 17, 21, 23, 27, 29, 31, 35, 39, 41, 45, 47, 51, 53, 57, 59, 61, 65, 69, 71, 73, 77, 79, 81, 83, 87, 91, 95, 97, 105, 107, 111, 115, 119, 121, 125, 127, 135, 137, 139, 143, 147, 149, 151, 155, 157, 165, 167, 171, 173, 177, 179, 183, 187, 195, 197, 201, 205, 209, 213, 217, 221, 223, 231, 233, 237, 239, 243, 247, 255, 257, 261, 263, 267, 269, 271, 275, 279, 281, 283, 287, 289, 297, 301, 305
OFFSET
0,3
COMMENTS
The second infinitary analog (after A260084) of A259934 (see comment there). Using Guba's method (2015) one can prove that such an infinite sequence exists.
All the first differences are powers of 2 (A260123).
See also comment in A260084.
FORMULA
a(n) = A260084(n)/2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Jul 17 2015
STATUS
approved