login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259907
Fifth differences of 7th powers (A001015).
1
1, 123, 1557, 6719, 16800, 31920, 52080, 77280, 107520, 142800, 183120, 228480, 278880, 334320, 394800, 460320, 530880, 606480, 687120, 772800, 863520, 959280, 1060080, 1165920, 1276800, 1392720, 1513680, 1639680, 1770720, 1906800, 2047920, 2194080, 2345280, 2501520, 2662800
OFFSET
0,2
REFERENCES
John H. Conway and Richard K. Guy, The Book of Numbers. New York: Springer-Verlag, pp. 30-32, 1996.
Kiran Parulekar. Amazing Properties of Squares and Their Calculations. Kiran Anil Parulekar, 2012.
Bag, Amulya Kumar (1966). "Binomial theorem in ancient India". Indian J. History Sci 1 (1): 68-74.
Ronald Graham and Donald Knuth, Patashnik, Oren (1994). "(5) Binomial Coefficients". Concrete Mathematics (2nd ed.). Addison Wesley. pp. 153-256.
FORMULA
G.f.: (1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1 - x)^3.
a(n) = 840*(3*n^2 - 9*n + 8) for n>3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6. - Vincenzo Librandi, Jul 08 2015
EXAMPLE
1 128 2187 16384 78125 279936 823543 2097152 4782969 (seventh powers)
1 127 2059 14197 61741 201811 543607 1273609 2685817 (first differences)
1 126 1932 12138 47544 140070 341796 730002 1412208 (second differences)
1 125 1806 10206 35406 92526 201726 388206 682206 (third differences)
1 124 1681 8400 25200 57120 109200 186480 294000 (fourth differences)
1 123 1557 6719 16800 31920 52080 77280 107520 (here)
MATHEMATICA
Join[{1, 123, 1557, 6719}, Table[840 (3 n^2 - 9 n + 8), {n, 4, 40}]]
PROG
(Sage) [1, 123, 1557, 6719]+[840*(3*n^2-9*n+8) for n in (4..40)] # Bruno Berselli, Jul 16 2015
(Magma) [1, 123, 1557, 6719] cat [840*(3*n^2-9*n+8): n in [4..40]]; // Bruno Berselli, Jul 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kolosov Petro, Jul 07 2015
EXTENSIONS
Edited by Editors of the OEIS, Jul 16 2015
STATUS
approved