OFFSET
0,2
REFERENCES
John H. Conway and Richard K. Guy, The Book of Numbers. New York: Springer-Verlag, pp. 30-32, 1996.
Kiran Parulekar. Amazing Properties of Squares and Their Calculations. Kiran Anil Parulekar, 2012.
Bag, Amulya Kumar (1966). "Binomial theorem in ancient India". Indian J. History Sci 1 (1): 68-74.
Ronald Graham and Donald Knuth, Patashnik, Oren (1994). "(5) Binomial Coefficients". Concrete Mathematics (2nd ed.). Addison Wesley. pp. 153-256.
LINKS
R. J. Mathar, Table of n, a(n) for n = 0..79
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: (1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1 - x)^3.
a(n) = 840*(3*n^2 - 9*n + 8) for n>3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6. - Vincenzo Librandi, Jul 08 2015
EXAMPLE
1 128 2187 16384 78125 279936 823543 2097152 4782969 (seventh powers)
1 127 2059 14197 61741 201811 543607 1273609 2685817 (first differences)
1 126 1932 12138 47544 140070 341796 730002 1412208 (second differences)
1 125 1806 10206 35406 92526 201726 388206 682206 (third differences)
1 124 1681 8400 25200 57120 109200 186480 294000 (fourth differences)
1 123 1557 6719 16800 31920 52080 77280 107520 (here)
MATHEMATICA
Join[{1, 123, 1557, 6719}, Table[840 (3 n^2 - 9 n + 8), {n, 4, 40}]]
PROG
(Sage) [1, 123, 1557, 6719]+[840*(3*n^2-9*n+8) for n in (4..40)] # Bruno Berselli, Jul 16 2015
(Magma) [1, 123, 1557, 6719] cat [840*(3*n^2-9*n+8): n in [4..40]]; // Bruno Berselli, Jul 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kolosov Petro, Jul 07 2015
EXTENSIONS
Edited by Editors of the OEIS, Jul 16 2015
STATUS
approved