login
A259708
Triangle T(n,k) (0 <= k <= n) giving coefficients of certain polynomials related to Fibonacci numbers.
3
1, 0, 1, 1, -1, 2, 0, 3, 0, 3, 1, 0, 14, 4, 5, 0, 8, 22, 60, 22, 8, 1, 6, 99, 244, 279, 78, 13, 0, 21, 240, 1251, 2016, 1251, 240, 21, 1, 25, 715, 5245, 14209, 14083, 5329, 679, 34, 0, 55, 1828, 21532, 88060, 139930, 88060, 21532, 1828, 55, 1, 78, 4817, 83060, 507398, 1218920, 1219382, 507068, 83225, 4762, 89
OFFSET
0,6
COMMENTS
The terms are the coefficients of the polynomials given by r_0(x) = 1; r_1(x) = x; r_(n+1) = (n+1)*x*r_n(x) + x*(1-x)*(r_n)'(x) + (1 - x)^2*r_(n-1)(x). [Carlitz, (1.6)]. Note: Carlitz wrongly states r_1(x) = 1. - Eric M. Schmidt, Jul 10 2015
LINKS
Eric M. Schmidt, Rows n = 0..50, flattened
L. Carlitz, Some polynomials related to Fibonacci and Eulerian numbers, Fib. Quart., 16 (1978), 217. (Annotated scanned copy)
L. Carlitz, Some polynomials related to Fibonacci and Eulerian numbers, Fib. Quart., 16 (1978), 216-226.
FORMULA
T(0,0) = 1; T(n+1,k) = (n-k+2)*T(n,k-1) + k*T(n,k) + T(n-1,k) - 2*T(n-1,k-1) + T(n-1,k-2), where we put T(n,k) = 0 if n < 0 or k < 0. As special cases, T(n,n) = Fibonacci(n+1) and T(n,0) = 1 (n even) or 0 (n odd). - Rewritten by Eric M. Schmidt, Jul 10 2015
EXAMPLE
Triangle begins:
1,
0,1,
1,-1,2,
0,3,0,3,
1,0,14,4,5,
0,8,22,60,22,8,
1,6,99,244,279,78,13,
0,21,240,1251,2016,1251,240,21,
...
MAPLE
A259708 := proc(n, k)
if k < 0 or k > n then
0;
elif k =0 and n =0 then
1;
else
(n-k+1)*procname(n-1, k-1)+k*procname(n-1, k)+procname(n-2, k)-2*procname(n-2, k-1) + procname(n-2, k-2) ;
end if ;
end proc: # R. J. Mathar, Jun 18 2019
MATHEMATICA
T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[k == 0 && n == 0, 1, (n - k + 1) T[n - 1, k - 1] + k T[n - 1, k] + T[n - 2, k] - 2 T[n - 2, k - 1] + T[n - 2, k - 2]]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 30 2020 *)
PROG
(Sage)
@CachedFunction
def T(n, k) :
if n < 0 or k < 0 : return 0
if n == 0 and k == 0 : return 1
return (n-k+1)*T(n-1, k-1) + k*T(n-1, k) + T(n-2, k) - 2*T(n-2, k-1) + T(n-2, k-2)
# Eric M. Schmidt, Jul 10 2015
CROSSREFS
Diagonals include A000045, A259709, A006502.
Cf. A000142 (row sums).
Sequence in context: A265017 A349136 A035376 * A029220 A249901 A253274
KEYWORD
sign,tabl,easy
AUTHOR
N. J. A. Sloane, Jul 05 2015
EXTENSIONS
More terms from and name revised by Eric M. Schmidt, Jul 10 2015
STATUS
approved