The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259703 Triangle read by rows: T(n,k) = number of permutations without overlaps in which the first increasing run has length k. 1
 1, 1, 1, 2, 1, 1, 5, 2, 2, 1, 12, 5, 4, 2, 1, 33, 13, 12, 4, 3, 1, 87, 35, 30, 12, 6, 3, 1, 252, 98, 90, 32, 21, 6, 4, 1, 703, 278, 243, 94, 54, 21, 8, 4, 1, 2105, 812, 745, 270, 175, 57, 32, 8, 5, 1, 6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,4 COMMENTS The 12th row of the triangle (as given in the reference) is definitely wrong, since the first column of this triangle is known (it is A000560). The row sums are also known - see A000682. From Roger Ford, Jul 06 2016: (Start) To determine the first increasing run of the permutation 176852943 start on the left and move to the right counting the consecutive integers. (1)7685(2)94(3).  This permutation a has a first run of (3-1)=2. The permutation 123465 has a first run of (5-1)=4. (1)(2)(3)(4)6(5). (End) REFERENCES A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949 LINKS Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy] EXAMPLE Triangle begins:      1;      1,    1;      2,    1,    1;      5,    2,    2,   1;     12,    5,    4,   2,   1;     33,   13,   12,   4,   3,   1;     87,   35,   30,  12,   6,   3,  1;    252,   98,   90,  32,  21,   6,  4,  1;    703,  278,  243,  94,  54,  21,  8,  4,  1;   2105,  812,  745, 270, 175,  57, 32,  8,  5, 1;   6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1;   ... PROG (PARI) Overlapfree(v)={for(i=1, #v, for(j=i+1, v[i]-1, if(v[j]>v[i], return(0)))); 1} Chords(u)={my(n=2*#u, v=vector(n), s=u[#u]); if(s%2==0, s=n+1-s); for(i=1, #u, my(t=n+1-s); s=u[i]; if(s%2==0, s=n+1-s); v[s]=t; v[t]=s); v} FirstRunLen(v)={my(e=1); for(i=1, #v, if(v[i]==e, e++)); e-2} row(n)={my(r=vector(n-1)); if(n>=2, forperm(n, v, if(v[1]<>1, break); if(Overlapfree(Chords(v)), r[FirstRunLen(v)]++))); r} for(n=2, 8, print(row(n))) \\ Andrew Howroyd, Dec 07 2018 CROSSREFS Row sums are A000682. First column is A000560. Cf. A259701. Sequence in context: A128704 A075259 A307877 * A316996 A169589 A003570 Adjacent sequences:  A259700 A259701 A259702 * A259704 A259705 A259706 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Jul 05 2015 EXTENSIONS Corrected and extended by Roger Ford, Jul 06 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)