login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000560
Number of ways of folding a strip of n labeled stamps.
(Formerly M1420 N0557)
10
1, 2, 5, 12, 33, 87, 252, 703, 2105, 6099, 18689, 55639, 173423, 526937, 1664094, 5137233, 16393315, 51255709, 164951529, 521138861, 1688959630, 5382512216, 17547919924, 56335234064, 184596351277, 596362337295, 1962723402375
OFFSET
2,2
REFERENCES
A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.
LINKS
T. D. Noe, Table of n, a(n) for n = 2..44 (derived from A000682)
CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
P. Di Francesco, O. Golinelli and E. Guitter, Meanders: a direct enumeration approach, arXiv:hep-th/9607039, 1996; Nucl. Phys. B 482 [FS] (1996), 497-535.
R. Dickau, Stamp Folding
R. Dickau, Stamp Folding [Cached copy, pdf format, with permission]
I. Jensen, Home page
I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).
I. Jensen and A. J. Guttmann, Critical exponents of plane meanders J. Phys. A 33, L187-L192 (2000).
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
A. Panayotopoulos, P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
J. Touchard, Contributions à l'étude du problème des timbres poste, Canad. J. Math., 2 (1950), 385-398.
M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
FORMULA
a(n) = (1/2)*A000682(n+1) for n >= 2.
a(n) = A000136(n+1)/(2*n+2) for n >= 2. - Jean-François Alcover, Sep 06 2019 (from formula in A000136)
MATHEMATICA
A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]];
a[n_] := A000682[[n + 1]]/2;
a /@ Range[2, 44] (* Jean-François Alcover, Sep 03 2019 *)
A000136 = Import["https://oeis.org/A000136/b000136.txt", "Table"][[All, 2]];
a[n_] := A000136[[n + 1]]/(2 n + 2);
a /@ Range[2, 44] (* Jean-François Alcover, Sep 06 2019 *)
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
Computed to n = 45 by Iwan Jensen - see link in A000682.
STATUS
approved