login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259659
Expansion of phi(x^6) * f(-x)^3 / f(-x^3) in powers of x where phi(), f() are Ramanujan theta functions.
1
1, -3, 0, 6, -3, 0, 1, -9, 0, 12, -3, 0, 6, -12, 0, 6, -3, 0, 7, -15, 0, 18, -6, 0, 0, -15, 0, 24, -6, 0, 6, -15, 0, 6, -9, 0, 7, -21, 0, 30, -3, 0, 6, -21, 0, 24, -6, 0, 12, -27, 0, 0, -9, 0, 12, -21, 0, 36, -6, 0, 1, -18, 0, 36, -12, 0, 6, -33, 0, 18, -9, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x^6) * b(x) in powers of x where phi() is a Ramanujan theta function and b() is a cubic AGM theta function.
Expansion of q^(-3/4) * eta(q)^3 * eta(q^12)^2 / (eta(q^3) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ -3, -3, -2, -3, -3, -1, -3, -3, -2, -3, -3, -3, ...].
a(2*n + 1) = -3 * A227595(n). a(3*n + 1) = -3 * A259655(n). a(3*n + 2) = 0.
EXAMPLE
G.f. = 1 - 3*x + 6*x^3 - 3*x^4 + x^6 - 9*x^7 + 12*x^9 - 3*x^10 + 6*x^12 + ...
G.f. = q^3 - 3*q^7 + 6*q^15 - 3*q^19 + q^27 - 9*q^31 + 12*q^39 - 3*q^43 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^6] QPochhammer[ x]^3 / QPochhammer[ x^3], {x, 0, n}];
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(-3/4)* eta[q]^3*eta[q^12]^2/(eta[q^3]*eta[q^6]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 17 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^12 + A)^2 / (eta(x^3 + A) * eta(x^6 + A)), n))};
CROSSREFS
Sequence in context: A226535 A005928 A113062 * A005889 A095712 A085753
KEYWORD
sign
AUTHOR
Michael Somos, Jul 02 2015
STATUS
approved