login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259586
Numbers k such that [r[s*k]] - [s[r*k]] = 2, where r = sqrt(2), s=sqrt(3), and [ ] = floor.
4
41, 67, 70, 123, 130, 205, 212, 328, 350, 403, 410, 444, 526, 548, 555, 608, 671, 700, 724, 750, 753, 806, 869, 888, 898, 951, 1026, 1033, 1067, 1086, 1096, 1149, 1224, 1231, 1265, 1291, 1294, 1347, 1376, 1429, 1489, 1504, 1545, 1571, 1574, 1627, 1709, 1716
OFFSET
1,1
COMMENTS
It is easy to prove that [r[s*k]] - [s[r*k]] ranges from -2 to 2. For k = 1 to 10, the values of [r[s*k]] - [s[r*k]] are 0, 1, 1, 0, -1, 1, 1, -1, 1, 0; the first appearance of 2 is when k = 41.
LINKS
MATHEMATICA
z = 12000; r = Sqrt[2]; s = Sqrt[3];
u = Table[Floor[r*Floor[s*n]], {n, 1, z}];
v = Table[Floor[s*Floor[r*n]], {n, 1, z}];
Flatten[Position[u - v, -2]] (* A259584 *)
Take[Flatten[Position[u - v, -1]], 100] (* A259585 *)
Take[Flatten[Position[u - v, 0]], 100] (* A259725 *)
Take[Flatten[Position[u - v, 1]], 100] (* A259587 *)
Take[Flatten[Position[u - v, 2]], 100] (* A259586 *)
Select[Range[2000], Floor[Sqrt[2]Floor[Sqrt[3]#]]-Floor[Sqrt[3]Floor[Sqrt[2]#]]==2&] (* Harvey P. Dale, Aug 10 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 15 2015
STATUS
approved