The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259586 Numbers k such that [r[s*k]] - [s[r*k]] = 2, where r = sqrt(2), s=sqrt(3), and [ ] = floor. 4
 41, 67, 70, 123, 130, 205, 212, 328, 350, 403, 410, 444, 526, 548, 555, 608, 671, 700, 724, 750, 753, 806, 869, 888, 898, 951, 1026, 1033, 1067, 1086, 1096, 1149, 1224, 1231, 1265, 1291, 1294, 1347, 1376, 1429, 1489, 1504, 1545, 1571, 1574, 1627, 1709, 1716 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS It is easy to prove that [r[s*k]] - [s[r*k]] ranges from -2 to 2. For k = 1 to 10, the values of [r[s*k]] - [s[r*k]] are 0, 1, 1, 0, -1, 1, 1, -1, 1, 0; the first appearance of 2 is when k = 41. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 MATHEMATICA z = 12000; r = Sqrt[2]; s = Sqrt[3]; u = Table[Floor[r*Floor[s*n]], {n, 1, z}]; v = Table[Floor[s*Floor[r*n]], {n, 1, z}]; Flatten[Position[u - v, -2]] (* A259584 *) Take[Flatten[Position[u - v, -1]], 100] (* A259585 *) Take[Flatten[Position[u - v, 0]], 100]  (* A259725 *) Take[Flatten[Position[u - v, 1]], 100]  (* A259587 *) Take[Flatten[Position[u - v, 2]], 100]  (* A259586 *) CROSSREFS Cf. A259584, A259585, A259587, A259724, A259725, A259746. Sequence in context: A055110 A245317 A039524 * A140374 A334765 A269807 Adjacent sequences:  A259583 A259584 A259585 * A259587 A259588 A259589 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 07:10 EDT 2022. Contains 356184 sequences. (Running on oeis4.)