login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259584
Numbers k such that [r[s*k]] - [s[r*k]] = -2, where r = sqrt(2), s=sqrt(3), and [ ] = floor.
4
116, 314, 512, 657, 1340, 1422, 1620, 1818, 1900, 2161, 2243, 2441, 2639, 2982, 3124, 3322, 3747, 3800, 3945, 4027, 4143, 4225, 4766, 5251, 5449, 5531, 5729, 5927, 6125, 6270, 6352, 6953, 7091, 7233, 7431, 7711, 7774, 7856, 8054, 8252, 8457, 8595, 9278, 9360
OFFSET
1,1
COMMENTS
It is easy to prove that [r[s*k]] - [s[r*k]] ranges from -2 to 2. For k = 1 to 10, the values of [r[s*k]] - [s[r*k]] are 0, 1, 1, 0, -1, 1, 1, -1, 1, 0.
The first -2 occurs when k = 116.
LINKS
MATHEMATICA
z = 12000; r = Sqrt[2]; s = Sqrt[3];
u = Table[Floor[r*Floor[s*n]], {n, 1, z}];
v = Table[Floor[s*Floor[r*n]], {n, 1, z}];
Flatten[Position[u - v, -2]] (* A259584 *)
Take[Flatten[Position[u - v, -1]], 100] (* A259585 *)
Take[Flatten[Position[u - v, 0]], 100] (* A259725 *)
Take[Flatten[Position[u - v, 1]], 100] (* A259587 *)
Take[Flatten[Position[u - v, 2]], 100] (* A259586 *)
Select[Range[10000], Floor[Sqrt[2]Floor[Sqrt[3]#]]-Floor[Sqrt[3]Floor[ Sqrt[ 2]#]]==-2&] (* Harvey P. Dale, Dec 01 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 15 2015
STATUS
approved