login
A259542
a(1) = 1, for n > 1 a(n) = smallest number not already in the sequence such that the arithmetic mean of two neighboring terms is a triangular number.
7
1, 5, 7, 13, 17, 3, 9, 11, 19, 23, 33, 39, 51, 21, 35, 37, 53, 57, 15, 27, 29, 43, 47, 25, 31, 41, 49, 61, 71, 85, 97, 59, 73, 83, 99, 111, 45, 65, 67, 89, 93, 63, 69, 87, 95, 115, 125, 147, 159, 81, 75, 107, 103, 79, 77, 55, 101, 109, 131, 141, 165, 177
OFFSET
1,2
COMMENTS
A259604(n) = (a(n) + a(n+1)) / 2;
conjecture: sequence is a permutation of the odd numbers, see also A259260, A259429;
a(A259543(n)) = 2*n-1.
LINKS
PROG
(Haskell)
import Data.List (delete)
a259542 n = a259542_list !! (n-1)
a259542_list = 1 : f 1 [3, 5 ..] where
f x zs = g zs where
g (y:ys) = if a010054 ((x + y) `div` 2) == 1
then y : f y (delete y zs) else g ys
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 30 2015
STATUS
approved