login
A259541
Numbers n such that antisigma(n) is palindromic.
0
1, 2, 3, 4, 5, 6, 13, 23, 30, 31, 36, 109, 119, 158, 351, 1645, 1653, 2003, 3476, 3520, 3934, 4913, 8037, 9379, 35324, 36516, 91951, 128955, 200003, 390066, 402603, 1068869, 2000003, 2144992, 2467458, 2867828, 3392245, 3607663
OFFSET
1,2
COMMENTS
Primes of the form 2*10^k+3 belong the sequence (see A177134 and A081677).
EXAMPLE
antisigma(1) = 1*2/2 - sigma(1) = 1 - 1 = 0;
antisigma(13) = 13*14/2 - sigma(13) = 91 - 14 = 77;
antisigma(109) = 109*110/2 - sigma(109) = 5995 - 110 = 5885.
MAPLE
with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;
for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
od; y; end: P:=proc(q) local a, n;
for n from 1 to q do a:=n*(n+1)/2-sigma(n); if a=T(a) then print(n);
fi; od; end: P(10^9);
MATHEMATICA
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[Range@ 4000000, palQ[# (# + 1)/2 - DivisorSigma[1, #]] &] (* Michael De Vlieger, Jul 01 2015 *)
PROG
(PARI) isok(n) = my(d = digits(n*(n+1)/2 - sigma(n))); Vecrev(d)==d; \\ Michel Marcus, Jul 01 2015
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Jun 30 2015
STATUS
approved