login
a(1) = 1, for n > 1 a(n) = smallest number not already in the sequence such that the arithmetic mean of two neighboring terms is a triangular number.
7

%I #7 Jun 30 2015 17:11:49

%S 1,5,7,13,17,3,9,11,19,23,33,39,51,21,35,37,53,57,15,27,29,43,47,25,

%T 31,41,49,61,71,85,97,59,73,83,99,111,45,65,67,89,93,63,69,87,95,115,

%U 125,147,159,81,75,107,103,79,77,55,101,109,131,141,165,177

%N a(1) = 1, for n > 1 a(n) = smallest number not already in the sequence such that the arithmetic mean of two neighboring terms is a triangular number.

%C A259604(n) = (a(n) + a(n+1)) / 2;

%C conjecture: sequence is a permutation of the odd numbers, see also A259260, A259429;

%C a(A259543(n)) = 2*n-1.

%H Reinhard Zumkeller, <a href="/A259542/b259542.txt">Table of n, a(n) for n = 1..10000</a>

%o (Haskell)

%o import Data.List (delete)

%o a259542 n = a259542_list !! (n-1)

%o a259542_list = 1 : f 1 [3, 5 ..] where

%o f x zs = g zs where

%o g (y:ys) = if a010054 ((x + y) `div` 2) == 1

%o then y : f y (delete y zs) else g ys

%Y Cf. A259260, A259429, A010054, A005408, A259604.

%K nonn

%O 1,2

%A _Reinhard Zumkeller_, Jun 30 2015